人教版高中数学椭圆专题复习资料67691.docx
《人教版高中数学椭圆专题复习资料67691.docx》由会员分享,可在线阅读,更多相关《人教版高中数学椭圆专题复习资料67691.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学椭圆的专题复习椭圆学问点梳理1. 椭圆的定义:1,2(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时1()。方程表示椭圆的充要条件是什么?(ABC0,且A,B,C同号,AB)。2. 椭圆的几何性质:(1)椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线; 离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。通径2.点与椭圆的位置关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内3直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交;(2)相切:直线与椭圆相切; (3)相离
2、:直线与椭圆相离; 如:直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+);4、焦半径(圆锥曲线上的点P到焦点F的间隔 )的计算方法:利用圆锥曲线的第二定义,转化到相应准线的间隔 ,即焦半径,其中表示P到与F所对应的准线的间隔 。如(1)已知椭圆上一点P到椭圆左焦点的间隔 为3,则点P到右准线的间隔 为_(答:10/3);(2)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_(答:);5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:,当即为短轴端点时,的最大值为bc;6、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A
3、、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特殊地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之与后,利用第二定义求解。7、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;如(1)假如椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); 特殊提示:因为
4、是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验! 椭圆学问点1如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。确定一个椭圆的标准方程须要三个条件:两个定形条件;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。 2椭圆标准方程中的三个量的几何意义椭圆标准方程中,三个量的大小与坐标系无关,是由椭圆本身的形态大小所确定的。分别表示椭圆的长半轴长、短半轴长与半焦距长,均为正数,且三个量的大小关系为:,且。可借助右图理解记忆: 明显:恰构成
5、一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。3如何由椭圆标准方程推断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,推断焦点位置的方法是:看,的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 4方程是表示椭圆的条件方程可化为,即,所以只有A、B、C同号,且AB时,方程表示椭圆。当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。5求椭圆标准方程的常用方法: 待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数的值。其主要步骤是“先定型,再定量”;定义法:由已知条件推断出动点的轨迹是什么图形,然后再根据定义确定方程。6共焦点的椭圆标准方程
6、形式上的差异共焦点,则c一样。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。7推断曲线关于轴、轴、原点对称的根据: 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的、同时换成、,方程不变,则曲线关于原点对称。8如何求解与焦点三角形PF1F2(P为椭圆上的点)有关的计算问题? 思路分析:与焦点三角形PF1F2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进展计算解题。将有关线段,有关角 ()结合起来,建立、之间的关系. 9如何计算椭圆的扁圆程度与离心率的关系? 长轴与短
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 椭圆 专题 复习资料 67691
限制150内