数据结构知识点总结[2].docx
《数据结构知识点总结[2].docx》由会员分享,可在线阅读,更多相关《数据结构知识点总结[2].docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数据结构学问点概括第一章 概 论数据就是指能够被计算机识别, 存储与加工处理的信息的载体。数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。数据结构的定义:逻辑结构:从逻辑结构上描述数据,独立于计算机。线性结构:一对一关系。线性结构:多对多关系。存储结构:是逻辑结构用计算机语言的实现。依次存储结构:如数组。链式存储结构:如链表。索引存储结构:稠密索引:每个结点都有索引项。稀疏索引:每组结点都有索引项。散列存储结构:如散列表。数据运算。对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。常用的有:检索, 插入, 删除, 更新, 排序。数据类型:是一个
2、值的集合以与在这些值上定义的一组操作的总称。结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:是抽象数据的组织与与之的操作。相当于在概念层上描述问题。 优点是将数据与操作封装在一起实现了信息隐藏。程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。评价算法的好坏的因素:算法是正确的;执行算法的时间;执行算法的存储空间(主要是协助存储空间);算法易于理解, 编码, 调试。时间困难度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。渐近时间困难度:是指当问题规模趋向无
3、穷大时,该算法时间困难度的数量级。评价一个算法的时间性能时,主要标准就是算法的渐近时间困难度。算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。时间困难度按数量级递增排列依次为:常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n2), 立方阶O(n3), k次方阶O(nk), 指数阶O(2n)。空间困难度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。算法的时间困难度与空间困难度合称算法困难度。第二章 线性表线性表是由n0个数据元素组成的有限序列。n=0是空表;非空表,只能有一个起先结点,有且只能有一个终端结点
4、。线性表上定义的基本运算:构造空表:Initlist(L)求表长:Listlength(L)取结点:GetNode(L,i)查找:LocateNode(L,x)插入:InsertList(L,x,i)删除:Delete(L,i)依次表是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。在存储单元中的各元素的物理位置与逻辑结构中各结点相邻关系是一样的。地址计算:LOCa(i)=LOCa(1)+(i-1)*d;(首地址为1)在依次表中实现的基本运算:插入:平均移动结点次数为n/2;平均时间困难度均为O(n)。 删除:平均移动结点次数为(n-1)/2;平均时间困难度均为O(n)。线性表的链式
5、存储结构中结点的逻辑次序与物理次序不肯定相同,为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还存储了其后继结点的地址信息(即指针或链)。这两部分信息组成链表中的结点结构。 一个单链表由头指针的名字来命名。单链表运算:建立单链表头插法:s-next=head;head=s;生成的依次与输入依次相反。平均时间困难度均为O(n)。尾插法:head=rear=null;if(head=null) head=s;else r-next=s;r=s; 平均时间困难度均为O(n)加头结点的算法:对起先结点的操作无需特别处理,统一了空表与非空表。查找按序号:与查找位置有关,平均时间困难度均为O(n)
6、。按值:与输入实例有关,平均时间困难度均为O(n)。插入运算:p=GetNode(L,i-1);s-next=p-next;p-next=s;平均时间困难度均为O(n)删除运算:p=GetNode(L,i-1);r=p-next;p-next=r-next;free(r);平均时间困难度均为O(n)单循环链表是一种首尾相接的单链表,终端结点的指针域指向起先结点或头结点。链表终止条件是以指针等于头指针或尾指针。采纳单循环链表在好用中多采纳尾指针表示单循环链表。优点是查找头指针与尾指针的时间都是O(1),不用遍历整个链表。双链表就是双向链表,就是在单链表的每个结点里再增加一个指向其干脆前趋的指针域
7、prior,形成两条不同方向的链。由头指针head惟一确定。双链表也可以头尾相链接构成双(向)循环链表。双链表上的插入与删除时间困难度均为O (1)。依次表与链表的比较:基于空间: 依次表的存储空间是静态安排,存储密度为1;适于线性表事先确定其大小时采纳。链表的存储空间是动态安排,存储密度1;适于线性表长度变更大时采纳。基于时间:依次表是随机存储结构,当线性表的操作主要是查找时,宜采纳。以插入与删除操作为主的线性表宜采纳链表做存储结构。若插入与删除主要发生在表的首尾两端,则宜采纳尾指针表示的单循环链表。第三章 栈与队列栈(Stack)是仅限制在表的一端进行插入与删除运算的线性表,称插入, 删除
8、这一端为栈顶,另一端称为栈底。表中无元素时为空栈。栈的修改是按后进先出的原则进行的,我们又称栈为LIFO表(Last In First Out)。通常栈有依次栈与链栈两种存储结构。栈的基本运算有六种: 构造空栈:InitStack(S)判栈空: StackEmpty(S)判栈满: StackFull(S)进栈: Push(S,x)退栈: Pop(S)取栈顶元素:StackTop(S)在依次栈中有“上溢”与“下溢”的现象。 “上溢”是栈顶指针指出栈的外面是出错状态。“下溢”可以表示栈为空栈,因此用来作为限制转移的条件。依次栈中的基本操作有六种:构造空栈 判栈空 判栈满 进栈 退栈 取栈顶元素链栈
9、则没有上溢的限制,因此进栈不要判栈满。链栈不须要在头部附加头结点,只要有链表的头指针就可以了。链栈中的基本操作有五种:构造空栈 判栈空 进栈 退栈 取栈顶元素队列(Queue)是一种运算受限的线性表,插入在表的一端进行,而删除在表的另一端进行,允许删除的一端称 为队头(front),允许插入的一端称为队尾(rear) ,队列的操作原则是先进先出的,又称作FIFO表(First In First Out) .队列也有依次存储与链式存储两种存储结构。队列的基本运算有六种:置空队:InitQueue(Q)判队空:QueueEmpty(Q)判队满:QueueFull(Q)入队:EnQueue(Q,x)
10、出队:DeQueue(Q)取队头元素:QueueFront(Q)依次队列的“假上溢”现象:由于头尾指针不断前移,超出向量空间。这时整个向量空间与队列是空的却产生了“上溢”现象。为了克服“假上溢”现象引入循环向量的概念,是把向量空间形成一个头尾相接的环形,这时队列称循环队列。判定循环队列是空还是满,方法有三种: 一种是另设一个布尔变量来推断;第二种是少用一个元素空间,入队时先测试(rear+1)%m = front)? 满:空;第三种就是用一个计数器记录队列中的元素的总数。队列的链式存储结构称为链队列,一个链队列就是一个操作受限的单链表。为了便于在表尾进行插入(入队)的 操作,在表尾增加一个尾指
11、针,一个链队列就由一个头指针与一个尾指针唯一地确定。链队列不存在队满与上溢的问题。在链队列的出队算法中,要留意当原队中只有一个结点时,出队后要同进修改头尾指针并使队列变空。第四章 串串是零个或多个字符组成的有限序列。空串:是指长度为零的串,也就是串中不包含任何字符(结点)。空白串:指串中包含一个或多个空格字符的串。在一个串中随意个连续字符组成的子序列称为该串的子串,包含子串的串就称为主串。子串在主串中的序号就是指子串在主串中首次出现的位置。空串是随意串的子串,随意串是自身的子串。串分为两种: 串常量在程序中只能引用不能变更;串变量的值可以变更。串的基本运算有: 求串长strlen(char*s
12、)串复制strcpy(char*to,char*from)串联接strcat(char*to,char*from)串比较charcmp(char*s1,char*s2)字符定位strchr(char*s,charc)串是特别的线性表(结点是字符),所以串的存储结构与线性表的存储结构类似。串的依次存储结构简称为依次串。依次串又可按存储安排的不同分为: 静态存储安排:干脆用定长的字符数组来定义。优点是涉与串长的操作速度 快,但不适合插入, 链接操作。动态存储安排:是在定义串时不安排存储空间,须要运用时按所需串的长度安排存储单元。串的链式存储就是用单链表的方式存储串值,串的这种链式存储结构简称为链串
13、。链串与单链表的差异只是它的 结点数据域为单个字符。为了解决“存储密度”低的状况,可以让一个结点存储多个字符,即结点的大小。依次串上子串定位的运算:又称串的“模式匹配”或“串匹配”,是在主串中查找出子串出现的位置。在串匹配中,将主串称为目标(串),子串称为模式(串)。这是比较简洁理解的,串匹配问题就是找出给定模式串P在给定目标串T中首次出现的有效位移或者是全部有效位移。最坏的状况下时间困难度是O(n-m+1)m),假如m与n同阶的话则它是O(n2)。链串上的子串定位运算位移是结点地址而不是整数第五章 多维数组数组一般用依次存储的方式表示。存储的方式有: 行优先依次,也就是把数组逐行依次排列。P
14、ASCAL, C 列优先依次,就是把数组逐列依次排列。FORTRAN地址的计算方法: 按行优先依次排列的数组:LOCa(ij)=LOCa(11)+(i-1)*n+(j-1)*d. 按列优先依次排列的数组:LOCa(ij)=LOCa(11)+(j-1)*n+(i-1)*d.矩阵的压缩存储:为多个相同的非零元素安排一个存储空间;对零元素不安排空间。特别矩阵的概念:所谓特别矩阵是指非零元素或零元素分布有肯定规律的矩阵。稀疏矩阵的概念:一个矩阵中若其非零元素的个数远远小于零元素的个数,则该矩阵称为稀疏矩阵。 特别矩阵的类型: 对称矩阵:满意a(ij)=a(ji)。元素总数n(n+1)/2.I=max(
15、i,j),J=min(i,j),LOCa(ij)=LOC(sa0)+(I*(I+1)/2+J)*d.三角矩阵: 上三角阵:k=i*(2n-i+1)/2+j-i,LOCa(ij)=LOC(sa0)+k*d. 下三角阵:k=i*(i+1)/2+j,LOCa(ij)=LOC(sa0)+k*d.对角矩阵:k=2i+j,LOCa(ij)=LOC(sa0)+k*d.稀疏矩阵的压缩存储方式用三元组表把非零元素的值与它所在的行号列号做为一个结点存放在一起,用这些结点组成的一个线性表来表示。但这种压缩存储方式将失去随机存储功能。加入行表记录每行的非零元素在三元组表中的起始位置,即带行表的三元组表。第六章 树树是
16、n个结点的有限集合,非空时必需满意:只有一个称为根的结点;其余结点形成m个不相交的子集,并称根的子树。根是起先结点;结点的子树数称度;度为0的结点称叶子(终端结点);度不为0的结点称分支结点(非终端结点);除根外的分支结点称内部结点;有序树是子树有左,右之分的树;无序树是子树没有左,右之分的树;森林是m个互不相交的树的集合;树的四种不同表示方法:树形表示法;嵌套集合表示法;凹入表示法广义表表示法。二叉树的定义:是n0个结点的有限集,它是空集(n=0)或由一个根结点与两棵互不相交的分别称作这个根的左子树与右子树的二叉树组成。二叉树不是树的特别情形,与度数为2的有序树不同。二叉树的4个重要性质:
17、二叉树上第i层上的结点数目最多为2(i-1)(i1)。;深度为k的二叉树至多有(2k)-1个结点(k1);在随意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1;具有n个结点的完全二叉树的深度为int(log2n)+1.满二叉树是一棵深度为k,结点数为(2k)-1的二叉树;完全二叉树是满二叉树在最下层自右向左去处部分结点;二叉树的依次存储结构就是把二叉树的全部结点依据层次依次存储到连续的存储单元中。(存储前先将其画成完全二叉树)树的存储结构多用的是链式存储。BinTNode的结构为lchild|data|rchild,把全部BinTNode类型的结点,加上一个指向根
18、结点的BinTree型头指针就构成了二叉树的链式存储结构,称为二叉链表。它就是由根指针root唯一确定的。共有2n个指针域,n+1个空指针。依据访问结点的次序不同可得三种遍历:先序遍历(前序遍历或先根遍历),中序遍历(或中根遍历), 后序遍历(或后根遍历)。时间困难度为O(n)。利用二叉链表中的n+1个空指针域来存放指向某种遍历次序下的前趋结点与后继结点的指针,这些附加的指针就称为“线索”,加上线索的二叉链表就称为线索链表。线索使得查找中序前趋与中序后继变得简洁有效,但对于查找指定结点的前序前趋与后序后继并没有什么作用。树与森林与二叉树的转换是唯一对应的。转换方法: 树变二叉树:兄弟相连,保留
19、长子的连线。二叉树变树:结点的右孩子与其双亲连。森林变二叉树:树变二叉树,各个树的根相连。树的存储结构:有双亲链表表示法:结点data | parent,对于求指定结点的双亲或祖先非常便利,但不适于求指定结点的孩子与后代。孩子链表表示法:为树中每个结点data | next设置一个孩子链表firstchild,并将data | firstchild存放在一个向量中。双亲孩子链表表示法:将双亲链表与孩子链表结合。孩子兄弟链表表示法:结点结构leftmostchild |data | rightsibing,附加两个分别指向该结点的最左孩子与右邻兄弟的指针域。树的前序遍历与相对应的二叉树的前序遍历
20、一样;树的后序遍历与相对应的二叉树的中序遍历一样。树的带权路径长度是树中全部叶结点的带权路径长度之与。树的带权路径长度最小的二叉树就称为最优二叉树(即哈夫曼树)。在叶子的权值相同的二叉树中,完全二叉树的路径长度最短。哈夫曼树有n个叶结点,共有2n-1个结点,没有度为1的结点,这类树又称为严格二叉树。变长编码技术可以使频度高的字符编码短,而频度低的字符编码长,但是变长编码可能使解码产生二义性。如00, 01, 0001这三个码无法在解码时确定是哪一个,所以要求在字符编码时任一字符的编码都不是其他字符编码的前缀,这种码称为前缀码(其实是非前缀码)。哈夫曼树的应用最广泛地是在编码技术上,它能够简洁地
21、求出给定字符集与其概率分布的最优前缀码。哈夫曼编码的构造很简洁,只要画好了哈夫曼树,按分支状况在左路径上写代码0,右路径上写代码1,然后从上到下到叶结点的相应路径上的代码的序列就是该结点的最优前缀码。第七章 图图的逻辑结构特征就是其结点(顶点)的前趋与后继的个数都是没有限制的,即随意两个结点之间之间都可能相关。图GraphG=(V,E),V是顶点的有穷非空集合,E是顶点偶对的有穷集。有向图Digraph:每条边有方向;无向图Undigraph:每条边没有方向。有向完全图:具有n*(n-1)条边的有向图;无向完全图:具有n*(n-1)/2条边的无向图;有根图:有一个顶点有路径到达其它顶点的有向图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据结构 知识点 总结
限制150内