新人教版七年级下册第六章实数数学教案1.docx
《新人教版七年级下册第六章实数数学教案1.docx》由会员分享,可在线阅读,更多相关《新人教版七年级下册第六章实数数学教案1.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 实数6.1 平方根(3课时) 课程目的 一、学问与技能目的 1.通过对平方值的计算等确立平方根的意义、开方的运算。理解算术平方根与平方根的区分与联络。毛 2.对于随意有理数都能区分其“”、“”性,运用计算器已势在必行。 二、过程与方法目的 采纳类比平方值的求法,定义出平方根的概念,同时从这个过程可知一个什么样的数才具有平方根,这种数有几个平方根?并比拟这两个平方根之间有什么关系? 三、情感看法与价值观目的 1.引导学生充分进展沟通,讨论与探究等教学活动,培育他们的合作与钻研精神。 2.理解无理数的发觉过程,激励学生大胆质疑,培育学生学习数学的热忱。 教材解读 本节内容首先给出一个简洁的
2、问题,依据正方形的面积求出其边长,由此引出求某数的平方根的问题,在涉及到不能干脆用已有的学问开方时,则引进计算器的运用方法,通过计算器对随意正数进展开方。这样将有理数与无理数沟通起来成为实数。 学情分析 上学期已经学习了有理数,对任何数的形式主义都可以顺当得到,同时也感知了“互为相反数的平方相等”,故由平方值去探究平方根的问题事实上只是互逆过程,只要求出一个数的平方就可得知平方根的值。第课时 一、创设情境,导入新课 玲玲家最近喜事不断,家里新购了一套房子,全家欢高兴喜地搬进新居,爸爸妈妈又增加了工资。条件改善了,为了给玲玲一个好的学习环境,爸爸准备给玲玲买一张桌子供她在家做作业。爸爸问玲玲:“
3、你宠爱长方形桌子还是正方形桌子?”玲玲认为正方形桌子更大,可以多堆点书,又可以有足够的位置写字,所以她更宠爱正方形桌子。于是爸爸依据她的宠爱为她购置了一张正方形桌子,玲玲量了量课桌的边长为100cm,你能算出这张桌子的周长和面积吗?当然可以了,可是假如玲玲更干脆地告知爸爸“我想要一张面积约为125dm的正方形桌子”。请问她爸爸能为她购置到满足的桌子吗?当然可以,计算正方形的面积必需要知道正方形的边长,依据边长求面积是乘方运算,而依据面积求边长又是什么运算呢?这节课我们就来讨论这个问题。 二、师生互动,课堂探究 (一)提出问题,引发讨论 1.你能求出下列各数的平方吗 0,-1,5,2.3,-,-
4、3,3,1, 能.02=0 (-1)2=1 52=25 2.32=5.29 (-)2= (-3)2=9 32=9 12=1 ()2= 2.若已知一个数的平方为下列各数,你能把这个数的取值说出来吗 25,0,4,-,1.69 能.由于52=25,(-5)2=25,故平方为25的数为5或-5. 02=0,故平方为0的数为0. 22=4,(-2)2=4,故平方为4的数为2或-2. (-)2=,()2=,故平方为的数为. (-)2=,()2=,故平方为的数为. 对于-这个数,没有哪个数的平方等于它,故平方为-的数找不到. 1.32=1.69,(-1.3)2=1.69,故平方为1.69的数是1.3. 又
5、如:课本P160中的问题:小欧要裁一块面积为25dm2的正方形画布,由于正方形的面积为边长的平方,而边长不行能为负数,故此画布的边长应为5dm.依此可得正方形的面积若分别为1,9,16,36,时,此正方形的边长分别为1,3,4,6, . 由以上讨论发觉,有时候我们已知一个数要求这个数的平方值时,只有一个,也有些时候,我们已知某数的平方,要求出这个数,发觉此时通常可找到两个数,且这两个数是互为相反数,而假如是已知某物的面积求其边长时,其边长也只有一个值.我们把已知平方值,求原数的问题称为求这个数的平方根. (二)导入学问,说明疑难 1.教材内容讲解 欲确定某数的平方根时,由以上过程发觉,即使有两
6、个值,这两个值也是一对互为相反数,因此事实上我们若求出其中一个值,另一个值也就可以依据求出的数再写出它的相反数,我们就可先确定一个正数,把这个正数称为所给数的算术平方根. 一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0. 例1 求下列各数的算术平方根: (1)900 (2)1 (3) (4)196 (5)0 (6)10-6 解:(1)302=900,故900的算术平方根是30,即=30. (3)()2=,故的算术平方根是,即= (4)142=196,故196的算术平方根是14,即=1
7、4. (5)02=0,故0的算术平方根是0,即=0. (6)(10-3)2=10-6,故10的算术平方根是10-3,即 =10-3 例2:节俭节约是中国人的一种美德,涛涛的爷爷是个能工巧匠,他把两张破损了一局部的桌面重新拼接成一张完好的正方形桌面,其面积为169dm2.已知他用的两张小桌面也是锯成了正方形的桌面,其中一张是边长为5dm的小板子,试问另一张较大的桌面的边长应为多少dm才能拼出面积为169dm2的桌面 分析:边长为5dm的正方形板子,其面积为25dm2,要拼出面积为169dm2的桌面,还需面积为169-25=144dm2的正方形桌面,故问题事实上转化为求144的算术平方根,即=12
8、. 解:设另一张较大的桌面的边长为xdm,则有x2+52=159,x2=169-25=144,而122=144 故144的算术平方根为12,即=12,即另一张桌面的边长应为12dm. 练习: 1.求下列各式的值: ; ; ; .解:=1.2 =0.1=0.9-0.2=0.7 = (2)若(a-1)2+b-9=0,则的算术平方根是下列哪一个( ) A. B.3 C.3 D.-3分析:由于(a-1)20.b-90, (a-1)2+b-9=0时,有a-1=0且b-9=0, a=1,b=9, =9,故的算术平方根是3. 3. 有意义吗为什么 分析: 无意义,因为任何数的平方都是非负数,即a20,故无意
9、义. 2.探究活动 (1)当a为负数时,a2有没有算术平方根其算术平方根与a有什么关系当a为正数时,a2的算术平方根如何表示a为0呢举例说明你的结论. (2)x2-x+是否有算术平方根如有请写出其算术平方根,如没有说明为什么 解:当a为负数时,a2为正数,故a2有算术平方根,如a=-5时,a2=(-5)2=25, =5,5是-5的相反数,故a20时,a的算术平方根与a互为相反数,表示为-a. 当a2为正数时,a的算术平方根表示为,其值为a,即=a. 当a=0时, =0 由此可知=|a|= (2)因为(x-)2=x2-x+,而(x-)2确定是非负数,故x-x+也是非负数,故x2-x+有算术平方根
10、,其算术平方根的值要视x的取值而定.当x时,x2-x+的算术平方根为x-.当x时,x2-x+的算术平方根为-(x-)=-x. (三)归纳总结,学问回忆 这节课主要就平方根中的算术平方根进展讨论,求一个数的算术平方根与求一个正数的平方幂正好是互逆的过程,因此,求正数的算术平方根事实上可以转化为求一个数的开平方运算.只不过,只有正数和0才有算术平方根,负数没有算术平方根. 练习设计 (一)双基练习 1.某数的算术平方根等于它本身,则这个数为_;若某数的算术平方根为其相反数,则这个数为_.2.求下列各式的值:, , , 3.3x-4为25的算术平方根,求x的值. 4.已知9的算术平方根为a,b的确定
11、值为4,求a-b的值. (二)创新提升 5.已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a、b的值. (三)探究拓展 6.若与互为相反数,求xy的算术平方根. 参考答案1.0,1 0; 2.0.4, ,3,0.5,10-1(); 3.x=3 4.a=3,b=4,则a-b=3-4或3-(-4),故a-b=-1或7. 5.a=5,b=2 6.x=4,y=4,xy=16,xy的算术平方根为4.课后作业:第2课时 一、创设情境,导入新课某同学用一张正方形纸片折小船,但他手头上没有现成的正方形纸片,于是他撕下一张作业本上的纸,依据如图,沿AE对折使点B落在点F的位置上,再把多余局部FE
12、CD剪下,假如他事先量得矩形ABCD的面积为90cm2,又测量剪下的多余的矩形纸片的面积为40cm2.请依据上述条件算出剪出的正方形纸片的边长是多少厘米. 将原矩形纸片的面积减去剩余的矩形纸片的面积即为正方形纸片的面积,正方形纸片的面积为90-40=50cm2,而正方形的面积为边长的平方,要求正方形的边长就得算出多少的平方等于50,但我们知道72=49,82=64,50这个数既不是72,也不是82,由于495064,故此正方形的边长应大于7而小于8.究竟它为多少呢它是一个小数吗你有什么方法确定这个值呢这一系列问题正是我们这节课要讨论的问题. 二、师生互动,课堂探究 (一)提出问题,引发讨论 在
13、实际问题中,往往会遇到像上述情形中的问题,假如在所学过的有理数中的确找不到适宜的数的平方会等于所给的数,我们该怎么表示所给数的算术平方根呢 我们知道,若有正数x,使x2=a(a0),则x为a的算术平方根,记作x=,于是若x2=50时(x为正数),则x=,而725082,因此有750,故50,故7 7.09,而7.082=50.12,7.072=49.98,故7.077.08,接着接着增加小数点后一位小数,如7.071,计算7.0712=49.99,而7.0722=50.013,故7.0717.072,如此接着进展下去,可以发觉将小数点后的小数位接着增加下去,始终不能穷尽,都只能使7.07的平方
14、值无限接近,因此发觉,不行能化为我们以前学过的无限循环小数,只能化为无限不循环小数,而有理数只包括有限小数和无限循环小数或者整数,但却不在这些数的范围内,只能说这个数不是有理数,我们把这种数重新命名为“无理数”,于是数的范围也就扩大了,是否我们可以干脆用计算器来计算某一个正数的算术平方根呢 只要计算器上有“”键或者“”键,它就可以用来求某正数的算术平方根了,但不同的计算器的按键依次不一样,只要按计算器的运用方法去按键,就可求出随意正数的算术平方根了. 例1:用计算器计算和,的值. 解:通过按键可得的值在计算器上显示:56,为有理数.的值在计算器上显示1.414213562,而的值在计算器上显示
15、2.236067978,的值在计算器上显示3.16227766.从计算器上显示的数都是位数有限的,因此往往给我们一个印象“这些值都是有理数”,而事实上我们知道用平方幂验证它们的平方根时,却怎么也找不到准确的数,使其平方为2、5、10,于是我们得出:这些数不是有理数,只是一个无限不循环小数即无理数.通过计算器计算出的小数只能是这些数的算术平方根的近似值或最接近的值.运用计算器可以很便利地确定一个随意正数的算术平方根. 活动:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形求出其边长. 分析:将两个面积为1的小正方形的面积相加得2,而要拼的大正方形的面积正好为2,于是可知,只要将两个小正方形
16、剪开再重新拼合成一个正方形即能满足要求.要确定新正方形的边长,我们就得确定的值大约是多少,我们知道12=1,22=4,故137=21cm,21cm比原正方形的边长20cm更长,这是不行能的. 通过上述两例发觉利用面积大的纸片不确定能剪出面积小的纸片. (三)归纳总结,学问回忆 通过本节课的学习可知,并不是全部的正数的算术平方根都是有理数,这时我们既可以用“”的形式表示,也可以用一个与的值接近的有理数替代,于是可用计算器算出这个数,但事实上,是一个无理数. 练习设计 (一)双基练习1. 用计算器求出下列各式的值. - 2.用计算器比拟与的大小. 3.在物理学中,用电器中的电阻R与电流I,功率P之
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版七 年级 下册 第六 实数 数学教案
限制150内