高中数学排列组合和概率人教版全部教案.docx
《高中数学排列组合和概率人教版全部教案.docx》由会员分享,可在线阅读,更多相关《高中数学排列组合和概率人教版全部教案.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、两个根本原理 一、教学目的1、学问传授目的:正确理解和驾驭加法原理和乘法原理2、实力培育目的:能准确地应用它们分析和解决一些简洁的问题3、思想教化目的:开展学生的思维实力,培育学生分析问题和解决问题的实力二、教材分析1.重点:加法原理,乘法原理。 解决方法:利用简洁的举例得到一般的结论2.难点:加法原理,乘法原理的区分。解决方法:运用比照的方法比拟它们的异同三、活动设计1.活动:思索,探讨,比照,练习2.教具:多媒体课件四、教学过程正1新课导入随着社会开展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品消费工序困难化,解决一件事经常有多种方法完成,或几个过程才能完成。 排列组合这
2、一章都是探讨简洁的计数问题,而排列、组合的根底就是根本原理,用好根本原理是排列组合的关键2新课我们先看下面两个问题(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法 一般地,有如下原理: 加法原理:做一件事,完成它可以有n类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,在第n类方
3、法中有mn种不同的方法那么完成这件事共有Nm1十m2十十mn种不同的方法(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条从A村经B村去C村,共有多少种不同的走法?板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法因此,从A村经B村去C村共有 3X2=6种不同的走法 一般地,有如下原理:乘法原理:做一件事,完成它须要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法那么完成这件事共有Nm1 m2mn种不同的方法 例1 书架上层放有6本不同的数学书,下层放有
4、5本不同的语文书 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类方法是从下层取语文书,可以从5本书中任取一本,有5种方法依据加法原理,得到不同的取法的种数是6十5=11答:从书架L任取一本书,有11种不同的取法(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法依据乘法原理,得到不同的取法的种数是 N6X530答:从书架上取数学书与语文书各一本,有30种不同的方法练习:
5、一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法? 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法依据乘法原理,得到可以组成的三位数的个数是N=5X5X5=
6、125 答:可以组成125个三位数 练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2一名儿童做加法嬉戏在一个红口袋中装着2O张分别标有数1、2、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、9、1O的黄卡片,从中任抽一张,把上面的数作为加数这名儿童一共可以列出多少个加法式子?3题2的变形4由09这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要推断是分类,还是分步?分类时
7、用加法,分步时用乘法 其次要留意怎样分类和分步,以后会进一步学习 练习1(口答)一件工作可以用两种方法完成有 5人会用第一种方法完成,另有4人会用第二种方法完成选出一个人来完成这件工作,共有多少种选法?2在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?3乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)绽开后共有多少项?4从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通从甲地到丙地共有多少种不同的走法?5一个口袋内装有5个小球,另一个口袋内装有4个小球,全部
8、这些小球的颜色互不一样 (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 作业:(略)排列【复习根本原理】1.加法原理 做一件事,完成它可以有n类方法,第一类方法中有m1种不同的方法,第二方法中有m2种不同的方法,第n方法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+mn 种不同的方法.2.乘法原理 做一件事,完成它须要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,.那么完成这件事共有 N=m1m2m3mn 种不同的方法.3.两个原理的区分:【练习1】1.北京、上海、
9、广州三个民航站之间的直达航线,须要打算多少种不同的机票?2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.【根本概念】1. 什么叫排列?从n个不同元素中,任取m()个元素(这里的被取元素各不一样)依据肯定的依次排成一列,叫做从n个不同元素中取出m个元素的一个排列 2. 什么叫不同的排列?元素和依次至少有一个不同.3. 什么叫一样的排列?元素和依次都一样的排列.4. 什么叫一个排列?【例题与练习】1. 由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a、b、c、d四个元素,写出每次取出3个元素的全部排列;写出每次取出4个元素的全部排列.【排列数】1. 定义:从n个不
10、同元素中,任取m()个元素的全部排列的个数叫做从n个元素中取出m元素的排列数,用符号表示.用符号表示上述各题中的排列数.2. 排列数公式:=n(n-1)(n-2)(n-m+1) ; ; ; ; 计算:= ; = ;= ;【课后检测】1. 写出: 从五个元素a、b、c、d、e中随意取出两个、三个元素的全部排列; 由1、2、3、4组成的无重复数字的全部3位数. 由0、1、2、3组成的无重复数字的全部3位数.2. 计算: 排 列课题:排列的简洁应用(1)目的:进一步驾驭排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简洁的实际问题 过程:一、复习:(引导学生对上节课所学学问进展复
11、习整理) 1排列的定义,理解排列定义须要留意的几点问题;2排列数的定义,排列数的计算公式 或 (其中mn m,nZ) 3全排列、阶乘的意义;规定 0!=1 4“分类”、“分步”思想在排列问题中的应用二、新授:例1: 7位同学站成一排,共有多少种不同的排法? 解:问题可以看作:7个元素的全排列5040 7位同学站成两排(前3后4),共有多少种不同的排法? 解:依据分步计数原理:76543217!5040 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? 解:问题可以看作:余下的6个元素的全排列=720 7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:依据分步计数原理:第
12、一步 甲、乙站在两端有种;第二步 余下的5名同学进展全排列有种 则共有=240种排列方法 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? 解法一(干脆法):第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步 从余下的5位同学中选5位进展排列(全排列)有种方法 所以一共有2400种排列方法解法二:(解除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法所以甲不能站在排头,乙不能排在排尾的排法共有=2400种 小结一:对于“在”与“不在”的问题,经常运用“干脆法”或“解除法”,对某些特殊元素可以优先考虑例2 : 7位同学站
13、成一排 甲、乙两同学必需相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进展全排列有种方法;再将甲、乙两个同学“松绑”进展排列有种方法所以这样的排法一共有1440种甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有720种甲、乙两同学必需相邻,而且丙不能站在排头和排尾的排法有多少种? 解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进展全排列有种方法;最终将甲、乙两个同学“松绑”进展排列有种方法所以这样的
14、排法一共有960种方法解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以丙不能站在排头和排尾的排法有种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进展全排列共有种方法,最终将甲、乙两同学“松绑”,所以这样的排法一共有960种方法小结二:对于相邻问题,常用“捆绑法”(先捆后松)例3: 7位同学站成一排甲、乙两同学不能相邻的排法共有多少种?解法一:(解除法)解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为
15、“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法甲、乙和丙三个同学都不能相邻的排法共有多少种? 解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有1440种小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑) 三、小结:1对有约束条件的排列问题,应留意如下类型: 某些元素不能在或必需排列在某一位置;某些元素要求连排(即必需相邻);某些元素要求分别(即不能相邻);2根本的解题方法: 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法); 某些元素
16、要求必需相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”; 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 在处理排列问题时,一般可采纳干脆和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基四、作业:课课练之“排列 课时13”排 列课题:排列的简洁应用(2)目的:使学生实在学会用排列数公式计算和解决简洁的实际问题,进一步培育分析问题、解决问题的实力,同时让学生学会一题多解过程:一、复习: 1排列、排列数的定义,排列数的两个计算公式;2常见的排队的三种题型:某些元素不能在或必需排
17、列在某一位置优限法;某些元素要求连排(即必需相邻)捆绑法;某些元素要求分别(即不能相邻)插空法3分类、分布思想的应用二、新授:示例一:从10个不同的文艺节目中选6个编成一个节目单,假如某女演员的独唱节目肯定不能排在第二个节目的位置上,则共有多少种不同的排法? 解法一:(从特殊位置考虑) 解法二:(从特殊元素考虑)若选: 若不选: 则共有 136080解法三:(间接法)136080示例二: 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法? 略解:甲、乙排在前排;丙排在后排;其余进展全排列所以一共有5760种方法 不同的五种商品在货架上排成一排,其中a,
18、b两种商品必需排在一起,而c, d两种商品不排在一起, 则不同的排法共有多少种? 略解:(“捆绑法”和“插空法”的综合应用)a, b捆在一起与e进展排列有; 此时留下三个空,将c, d两种商品排进去一共有;最终将a, b“松绑”有所以一共有24种方法 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?略解:(分类)若第一个为教师则有;若第一个为学生则有 所以一共有272种方法示例三: 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?略解: 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?解法一:分成两类,一类是
19、首位为1时,十位必需大于等于3有种方法;另一类是首位不为1,有种方法所以一共有个数比13 000大解法二:(解除法)比13 000小的正整数有个,所以比13 000大的正整数有114个示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列 第114个数是多少? 3 796是第几个数?解: 因为千位数是1的四位数一共有个,所以第114个数的千位数应当是“3”,十位数字是“1”即“31”开头的四位数有个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必定是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数 由上可知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 排列组合 概率 人教版 全部 教案
限制150内