《六年级数学下册知识点归纳人教版1.docx》由会员分享,可在线阅读,更多相关《六年级数学下册知识点归纳人教版1.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、六年级数学下册一、二单元学问点归纳整理第一单元 负数1.负数:在数轴线上,负数都在0的(左侧),全部的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。2.正数:大于0的数叫正数(不包括0),数轴上0(右边)的数叫做正数若一个数大于零(0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有(多数个),其中有(正整数,正分数和正小数)。3. (0)既不是正数,也不是负数,它是正、负数的界限。全部的负数都在0的(左边),负数都小于0,正数都大于0,负数都比正数(小)。第二单元 圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)
2、侧面的特征:圆柱的侧面是一个曲面。(3)高的特征:圆柱有多数条高。2、圆柱的高:两个底面之间的间隔 叫做高。3、圆柱的侧面绽开图:当沿高绽开时绽开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长宽,所以圆柱的侧面积=底面周长高当底面周长和高相等时,沿高绽开图是(正方形);当不沿高绽开时绽开图是(平行四边形)。4、圆柱的侧面积:圆柱的侧面积=底面的周长高,用字母表示为:S侧=Ch。 h=S侧C C= S侧hS侧=dh=2rh5、圆柱的外表积:圆柱的外表积=侧面积+底面积2。即S表= S侧+ S底2 =Ch+
3、(C2) 2 =dh+(d2) 2 =2rh+r2(计算时最好分步运用公式,以免出现计算错误。)6、圆柱外表积在实际中的应用:无盖水桶的外表积=侧面积+一个底面积油桶的外表积=侧面积+两个底面积烟囱通风管的外表积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=VS S=Vh V=rh (已知r) V=(d2) h (已知d)V=(C2) h (已知C)8、 把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形状发生了改变,体积没有发生改
4、变。外表积增加了2rh.9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征:圆锥有一条高。10、圆锥的高:从圆锥的顶点究竟面圆心的间隔 是圆锥的高。11、圆锥的体积:圆柱的体积等于和它等底等高的圆锥体积的3倍,反之圆锥的体积等于和它等底等高的圆柱体积的三分之一。V锥= V柱=ShV锥= rh V锥= (d2)h V锥= (C2)h12、圆柱及圆锥的关系:(1)及圆柱等底等高的圆锥体积是圆柱体积的三分之一。(2)体积和高相等的圆锥及圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。(3)体积和底面积相等的圆锥及圆柱(等低等高)之间,圆锥的高是
5、圆柱的三倍。 13、生活中的圆锥:沙堆、漏斗、帽子。典型题:1、 一个圆柱的侧面绽开是一个正方形,它的高是底面直径的倍,即h=C=d,它的侧面积是S侧=h2、 圆柱的底面半径扩大2倍,高不变,外表积扩大2倍,体积扩大4倍。3、 圆柱的底面半径扩大2倍,高也扩大2倍,外表积扩大4倍,体积扩大8倍。4、 圆柱的底面半径扩大3倍,高缩小3倍,外表积不变,体积扩大3倍。5、 一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米 列式为:48(3+1)或48(1+ )6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是( )立方分
6、米,圆锥的体积是( )立方分米。求圆锥体积列式为:24(31)或24(1 )7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是( )厘米。 V柱=V锥 Sh= Sh 2=h h=2 h=616、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是( )平方分米。Sh= Sh4 = SS=4S1217、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。假如圆锥的高是3.6厘米,圆柱的高是( )厘米,假如圆柱的高是3.6厘米,圆锥的高是( )厘米。Sh1 Sh 6 h = 63.6 圆柱的高:h = 7.2Sh1 Sh 6 h6 = h 2h =
7、 3.6圆锥的高: h = 1.818、一个圆柱体,把它的高截短3厘米,它的底面积削减94.2平方厘米,这个圆柱的体积削减了( )立方厘米。C=S侧h r=C2 V=rh =94.23 =31.43.142 =3.1453 =31.4(厘米) =5(厘米) =235.5(立方厘米)19、把一个底面半径是5cm,高是10cm的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,( )没有发生改变,外表积增加了( )平方厘米。20、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?列式为:9h=1221、思索题:一个圆柱体和一个圆锥体积相等,底面半径的比是3:2,圆锥及圆柱高的比是
8、( )六年级数学下册第三、四单元学问点归纳整理1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比拟,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数及除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。2、比的根本性质:比的前项和后项同时乘上或者除以一样的数(0除外),比值不变,这叫做比的根本性质。3、求比值和化简比:求比值的方法:用比的前项除以后
9、项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的根本性质可以把比化成最简洁的整数比。它的结果必需是一个最简比,即前、后项是互质的数。4、按比例安排:在农业消费和日常生活中,经常须要把一个数量根据肯定的比来进展安排。这种安排的方法通常叫做按比例安排。方法:首先求出各局部占总量的几分之几,然后求出总数的几分之几是多少。5、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。6、比例的根本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的根本性质。7、比和比例的区分(1)比表示两个量相除的关系,它有两项(即前、后
10、项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。(2)比有根本性质,它是化简比的根据;比例也有根本性质,它是解比例的根据。8、成正比例的量:两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的比值(也就是商)肯定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(肯定)9、成反比例的量:两种相关联的量,一种量改变,另一种量也随着改变,假如这两种量中相对应的两个数的积肯定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(肯定)10、推断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就
11、的两个数的商肯定还是积肯定,假如商肯定,就成正比例;假如积肯定,就成反比例。11、比例尺:一幅图的图上间隔 和实际间隔 的比,叫做这幅图的比例尺。12、比例尺的分类(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺13、图上间隔 :实际间隔 =比例尺 或 图上间隔 实际间隔 实际间隔 比例尺=图上间隔 图上间隔 比例尺=实际间隔 14、应用比例尺画图的步骤:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上间隔 ;(4)画图(画出单位长度)(5)标出实际间隔 ,写清地点名称(6)标出比例尺15、图形的放大及缩小:形态一样,大小不同。16、用比例解决问题:根据问题中的不变量找
12、出两种相关联的量,并正确推断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。17、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的马路长多少千米?(用比例的学问解答)这道题里,“照这样的速度”就是说(汽车行驶的速度)是肯定的,那么(行驶的路程)和(时间)成正比例关系,所以两次行驶的(路程)和(时间)的比值是相等的。解:设甲乙两地之间的马路长x千米。 140 x =2 52x=1405 X=14052 X=350答:甲乙两地之间的马路长350千米. 18、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,假如要4小时到达,每小时
13、须要行驶多少千米?(用比例的学问解答)这道题里,( )是肯定的,( )和( )成( )关系,所以两次行驶的( )和( )的( )是相等的。解:设每小时须要行驶x千米. 4x=705X=7054X=87.5 答:每小时须要行驶87.5千米.19、常见的数量关系式:单价数量=总价 单产量数量=总产量总价 总产量= 数量 =数量单价 单产量总价 总产量=单价 =单产量数量 数量速度时间=路程 工效工作时间=工作总量路程 工作总量=时间 =工作时间速度 工效路程 工作总量= 速度 = 工效时间 工作时间20、已知图上间隔 和实际间隔 可以求比例尺。已知比例尺和图上间隔 可以务实际间隔 。已知比例尺和实
14、际间隔 可以求图上间隔 。计算时图距和实距单位必需统一。21、一块长方形试验田,长80米,宽60米,用1/2000的比例尺画出这块试验田的平面图。解:设长应画x厘米,设宽应画y厘米。80米=8000厘米 60米=6000厘米X 1 y 1 = = 8000 2000 6000 2000 80001 60001X = y = 2000 2000X = 4 y = 3答:长应画4厘米,宽应画3厘米。长方形试验田的平面图 60米 比例尺1:2000 80米22、播种的总公顷数肯定,每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数天数=播种的总公顷数 已知播种的总公顷数肯定,就是每天播
15、种的公顷数和要用的天数的积是肯定的,所以每天播种的公顷数和要用的天数成反比例。23、推断下面各题的两个量是不是成比例,假如成比例,成什么比例?(1)订阅中国少年报的份数和钱数。 钱数因为 = 每份的钱数(肯定) 订阅中国少年报的份数所以,订阅中国少年报的份数和钱数成正比例。(2)三角形的底肯定,它的面积和高。 三角形的面积因为 = 1/2(肯定) 高所以,它的面积和高成正比例。(3)图上间隔 肯定,实际间隔 和比例尺。因为,实际间隔 比例尺=图上间隔 (肯定)所以,实际间隔 和比例尺成反比例。(4)一条绳子的长度肯定,剪去的局部和剩下的局部。因为,剪去的局部和剩下的局部不存在比值或积肯定的关系,所以,剪去的局部和剩下的局部不成比例。(5)圆的面积和它的半径不成正比例,因为圆的面积和它的半径的比值不肯定,所以圆的面积和它的半径不成正比例。24、用边长是15厘米的方砖给教室铺地,须要2000块,假如改用边长25厘米的方砖铺地,须要多少块砖?(用比例解)25、修一条马路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条马路还要多少天?(用比例解)
限制150内