等比数列知识点总结与典型例题答案.docx
《等比数列知识点总结与典型例题答案.docx》由会员分享,可在线阅读,更多相关《等比数列知识点总结与典型例题答案.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等比数列学问点总结与典型例题答案等比数列学问点总结与典型例题1、等比数列的定义:,称为公比2、通项公式:,首项:;公比:推广:3、等比中项:(1)假设成等比数列,那么叫做与的等差中项,即:或留意:同号的两个数才有等比中项,并且它们的等比中项有两个(2)数列是等比数列4、等比数列的前项和公式:(1)当时,(2)当时,(为常数)5、等比数列的断定方法:(1)用定义:对随意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列6、等比数列的证明方法:根据定义:若或为等比数列7、等比数列的性质:(2)对任何,在等比数列中,有。(3)若,则。特殊的,当时,得 注:等差和等比数列比拟:等差
2、数列等比数列定义递推公式;通项公式()中项()()前项和重要性质经典例题透析类型一:等比数列的通项公式例1等比数列中,, ,求.思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出和,可得;或留意到下标,可以利用性质可求出、,再求.总结升华: 列方程(组)求解是等比数列的根本方法,同时利用性质可以削减计算量;解题过程中详细求解时,要设法降次消元,经常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】an为等比数列,a1=3,a9=768,求a6。【变式2】an为等比数列,an0,且a1a89=16,求a44a45a46的值。【变式3】已知等比数列
3、,若,求。类型二:等比数列的前n项和公式例2设等比数列an的前n项和为Sn,若S3+S6=2S9,求数列的公比q.举一反三:【变式1】求等比数列的前6项和。【变式2】已知:an为等比数列,a1a2a3=27,S3=13,求S5.【变式3】在等比数列中,求和。类型三:等比数列的性质例3. 等比数列中,若,求. 举一反三:【变式1】正项等比数列中,若a1a100=100; 则lga1+lga2+lga100=_.【变式2】在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_。类型四:等比数列前n项和公式的性质例4在等比数列中,已知,求。思路点拨:等差数列中也有类似的题目,我们照旧承受
4、等差数列的解决方法,即等比数列中前k项和,第2个k项和,第3个k项和,第n个k项和照旧成等比数列。举一反三:【变式1】等比数列中,公比q=2, S4=1,则S8=_.【变式2】已知等比数列的前n项和为Sn, 且S10=10, S20=40,求:S30=?【变式3】等比数列的项都是正数,若Sn=80, S2n=6560,前n项中最大的一项为54,求n.【变式4】等比数列中,若a1+a2=324, a3+a4=36, 则a5+a6=_.【变式5】等比数列中,若a1+a2+a3=7,a4+a5+a6=56, 求a7+a8+a9的值。类型五:等差等比数列的综合应用例5已知三个数成等比数列,若前两项不变
5、,第三项减去32,则成等差数列.若再将此等差数列的第二项减去4,则又成等比数列.求原来的三个数.思路点拨:恰当地设元是顺当解方程组的前提.考虑到有三个数,应尽量设较少的未知数,并将其设为整式形式.总结升华:选择适当的设法可使方程简洁易解。一般地,三数成等差数列,可设此三数为a-d, a, a+d;若三数成等比数列,可设此三数为,x, xy。但还要就问题而言,这里解法二中承受首项a,公比q来解决问题反而简便。举一反三:【变式1】一个等比数列有三项,假设把第二项加上4,那么所得的三项就成为等差数列,假设再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列.【变式2】已知
6、三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。【变式3】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求这四个数.类型六:等比数列的推断与证明例6已知数列an的前n项和Sn满意:log5(Sn+1)=n(nN+),求出数列an的通项公式,并推断an是何种数列?思路点拨:由数列an的前n项和Sn可求数列的通项公式,通过通项公式推断an类型.举一反三:【变式1】已知数列Cn,其中Cn=2n+3n,且数列Cn+1-pCn为等比数列,求常数p。【答案】p=2或p=3;【证明】设数列an、bn的公比分别为p, q
7、,且pq【变式3】推断正误:(1)an为等比数列a7=a3a4;(2)若b2=ac,则a,b,c为等比数列;(3)an,bn均为等比数列,则anbn为等比数列;(4)an是公比为q的等比数列,则、仍为等比数列;(5)若a,b,c成等比,则logma,logmb,logmc成等差.类型七:Sn与an的关系例7已知正项数列an,其前n项和Sn满意,且a1,a3,a15成等比数列,求数列an的通项an.总结升华:等比数列中通项与求和公式间有很大的联络,它们是,尤其留意首项与其他各项的关系.举一反三:【变式】命题1:若数列an的前n项和Sn=an+b(a1),则数列an是等比数列;命题2:若数列an的
8、前n项和Sn=na-n,则数列an既是等差数列,又是等比数列。上述两个命题中,真命题为 个.经典例题透析类型一:等比数列的通项公式例1等比数列中,, ,求.思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出和,可得;或留意到下标,可以利用性质可求出、,再求.解析:法一:设此数列公比为,则由(2)得:.(3) .由(1)得: , .(4)(3)(4)得:, ,解得或当时,;当时,.法二:,又, 、为方程的两实数根, 或 , 或.总结升华: 列方程(组)求解是等比数列的根本方法,同时利用性质可以削减计算量;解题过程中详细求解时,要设法降次消元,经常整体代入以达降次目的,故较
9、多变形要用除法(除式不为零).举一反三:【变式1】an为等比数列,a1=3,a9=768,求a6。【答案】96法一:设公比为q,则768=a1q8,q8=256,q=2,a6=96;法二:a52=a1a9a5=48q=2,a6=96。【变式2】an为等比数列,an0,且a1a89=16,求a44a45a46的值。【答案】64;,又an0,a45=4。【变式3】已知等比数列,若,求。【答案】或;法一:,从而解之得,或,当时,;当时,。故或。法二:由等比数列的定义知,代入已知得将代入(1)得,解得或由(2)得或 ,以下同方法一。类型二:等比数列的前n项和公式例2设等比数列an的前n项和为Sn,若S
10、3+S6=2S9,求数列的公比q.解析:若q=1,则有S3=3a1,S6=6a1,S9=9a1.因a10,得S3+S62S9,明显q=1与题设冲突,故q1.由得,整理得q3(2q6-q3-1)=0,由q0,得2q6-q3-1=0,从而(2q3+1)(q3-1)=0,因q31,故,所以。举一反三:【变式1】求等比数列的前6项和。【答案】;,。【变式2】已知:an为等比数列,a1a2a3=27,S3=13,求S5.【答案】;,则a1=1或a1=9.【变式3】在等比数列中,求和。【答案】或2,;,解方程组,得 或将代入,得,由,解得;将代入,得,由,解得。或2,。类型三:等比数列的性质例3. 等比数
11、列中,若,求.解析: 是等比数列, 举一反三:【变式1】正项等比数列中,若a1a100=100; 则lga1+lga2+lga100=_.【答案】100;lga1+lga2+lga3+lga100=lg(a1a2a3a100)而a1a100=a2a99=a3a98=a50a51 原式=lg(a1a100)50=50lg(a1a100)=50lg100=100。【变式2】在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_。【答案】216;法一:设这个等比数列为,其公比为,。法二:设这个等比数列为,公比为,则,参加的三项分别为,由题意,也成等比数列,故,。类型四:等比数列前n项和公
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 知识点 总结 典型 例题 答案
限制150内