高考数学基本不等式知识点归纳1.docx
《高考数学基本不等式知识点归纳1.docx》由会员分享,可在线阅读,更多相关《高考数学基本不等式知识点归纳1.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学根本不等式的巧用一根本不等式1.(1)若,则 (2)若,则(当且仅当时取“=”)2. (1)若,则 (2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比拟大小、求变量的取值范围、
2、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例1:求下列函数的值域(1)y3x 2 (2)yx解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)解题技巧:技巧一:凑项例1:已知,求函数的最大值。解:因,所以首先要“调整”符号,又不是常数,所以对要进展拆、凑项,当且仅当,即时,上式等号成立,故当时,。评注:本题须要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数例1. 当时,求的最大值。解析:由知,利用根本不等式求最值,必需和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。留意到为定值,故只需将凑
3、上一个系数即可。当,即x2时取等号 当x2时,的最大值为8。评注:本题无法干脆运用根本不等式求解,但凑系数后可得到和为定值,从而可利用根本不等式求最大值。变式:设,求函数的最大值。解:当且仅当即时等号成立。技巧三: 分别例3. 求的值域。解析一:本题看似无法运用根本不等式,不妨将分子配方凑出含有(x1)的项,再将其分别。当,即时,(当且仅当x1时取“”号)。技巧四:换元解析二:本题看似无法运用根本不等式,可先换元,令t=x1,化简原式在分别求最值。当,即t=时,(当t=2即x1时取“”号)。评注:分式函数求最值,通常干脆将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,
4、g(x)恒正或恒负的形式,然后运用根本不等式来求最值。技巧五:留意:在应用最值定理求最值时,若遇等号取不到的状况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。练习求下列函数的最小值,并求获得最小值时,x 的值. (1) (2) (3) 2已知,求函数的最大值.;3,求函数的最大值.条件求最值1.若实数满意,则的最小值是 .分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值, 解: 都是正数,当时等号成立,由及得即当时,的最小值是6变式:若,求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 基本 不等式 知识点 归纳
限制150内