高考数学文科高考真题模拟新题分类汇编H单元解析几何.docx
《高考数学文科高考真题模拟新题分类汇编H单元解析几何.docx》由会员分享,可在线阅读,更多相关《高考数学文科高考真题模拟新题分类汇编H单元解析几何.docx(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 数 学H单元解析几何 H1直线的倾斜角与斜率、直线的方程6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20Cxy30 Dxy306D解析 由直线l与直线xy10垂直,可设直线l的方程为xym0.又直线l过圆x2(y3)24的圆心(0,3),则m3,所以直线l的方程为xy30,故选D.20、2014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积20解:(1)圆C的方程可化为x2
2、(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则CM(x,y4),MP(2x,2y)由题设知CMMP0,故x(2x)(y4)(2y)0,即(x1)2(y3)22.由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM.因为ON的斜率为3,所以直线l的斜率为,故l的方程为yx.又|OM|OP|2 ,O到直线l的间隔 为,故|PM|,所以POM的面积为.21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,
3、点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图1521解:(1)设F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆心在y轴上的圆C与椭
4、圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1)再由F1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在满意题设条件的圆,其
5、方程为x2.H2两直线的位置关系与点到直线的间隔 6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20Cxy30 Dxy306D解析 由直线l与直线xy10垂直,可设直线l的方程为xym0.又直线l过圆x2(y3)24的圆心(0,3),则m3,所以直线l的方程为xy30,故选D.18、2014江苏卷 如图16所示,为爱护河上古桥OA,规划建一座新桥BC,同时设立一个圆形爱护区规划要求:新桥BC与河岸AB垂直;爱护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上随意一点的间隔 均不少于80 m经测量,点A位于
6、点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO.(1)求新桥BC的长(2)当OM多长时,圆形爱护区的面积最大?图1618解: 方法一:(1)如图所示, 以O为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy.由条件知A(0, 60), C(170,0),直线 BC 的斜率kBCtanBCO.又因为 ABBC, 所以直线AB的斜率kAB.设点 B 的坐标为(a,b),则kBC, kAB,解得a80, b120,所以BC150.因此新桥BC的长是150 m.(2)设爱护区的边界圆M的半径为r m, OMd m (0d60)由条件知, 直线BC的
7、方程为y(x170),即4x3y6800.由于圆M与直线BC相切, 故点 M(0, d)到直线BC的间隔 是r,即r.因为O和A到圆M上随意一点的间隔 均不少于80 m,所以即解得10d35.故当d10时, r 最大, 即圆面积最大,所以当OM10 m时, 圆形爱护区的面积最大方法二:(1)如图所示, 延长 OA, CB 交于点F.因为 tanFCO,所以sinFCO, cosFCO.因为OA60,OC170,所以OFOC tanFCO, CF, 从而AFOFOA.因为OAOC, 所以cosAFB sinFCO.又因为 ABBC,所以BFAFcosAFB, 从而BCCFBF150.因此新桥BC
8、的长是150 m.(2)设爱护区的边界圆 M与BC的切点为D,连接 MD,则MDBC,且MD是圆M的半径,并设MDr m,OMd m (0d60)因为OAOC, 所以sinCFOcosFCO.故由(1)知sinCFO, 所以r.因为O和A到圆M上随意一点的间隔 均不少于80 m,所以即解得10d35.故当d10时, r最大,即圆面积最大,所以当OM10 m时, 圆形爱护区的面积最大22、2014全国卷 已知抛物线C:y22px(p0)的焦点为F,直线y4与 y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于
9、M,N两点,且A,M,B,N四点在同一圆上,求l的方程22解:(1)设Q(x0,4),代入y22px,得x0,所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2,所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x,得y24my40.设A(x1,y1),B(x2,y2),则y1y24m,y1y24.故线段AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又直线l的斜率为m,所以l的方程为xy2m23.将上式代入y24x,并整理得y2 y4(2m23)0.设M(x3,y3),N(x4,y4),则y3y4,y3y44(2m23
10、)故线段MN的中点为E,|MN|y3y4|.由于线段MN垂直平分线段AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)2,化简得m210,解得m1或m1.所求直线l的方程为xy10或xy10.21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图1521解:(1)设
11、F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1)再由F
12、1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在满意题设条件的圆,其方程为x2.H3圆的方程6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20Cxy30 Dxy306D解析 由直线l与直线xy10垂直,可设直线l的方程为xym0.又直线l过圆x2(y3)24的圆心
13、(0,3),则m3,所以直线l的方程为xy30,故选D.172014湖北卷 已知圆O:x2y21和点A(2,0),若定点B(b,0)(b2)和常数满意:对圆O上随意一点M,都有|MB|MA|,则(1)b_;(2)_17(1)(2)解析 设点M(cos ,sin ),则由|MB|MA|得(cos b)2sin22,即2bcos b2142cos 52对随意的都成立,所以又由|MB|MA|,得0,且b2,解得18、2014江苏卷 如图16所示,为爱护河上古桥OA,规划建一座新桥BC,同时设立一个圆形爱护区规划要求:新桥BC与河岸AB垂直;爱护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端
14、O和A到该圆上随意一点的间隔 均不少于80 m经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO.(1)求新桥BC的长(2)当OM多长时,圆形爱护区的面积最大?图1618解: 方法一:(1)如图所示, 以O为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy.由条件知A(0, 60), C(170,0),直线 BC 的斜率kBCtanBCO.又因为 ABBC, 所以直线AB的斜率kAB.设点 B 的坐标为(a,b),则kBC, kAB,解得a80, b120,所以BC150.因此新桥BC的长是150 m.(2)设爱护区的边界圆M的
15、半径为r m, OMd m (0d60)由条件知, 直线BC的方程为y(x170),即4x3y6800.由于圆M与直线BC相切, 故点 M(0, d)到直线BC的间隔 是r,即r.因为O和A到圆M上随意一点的间隔 均不少于80 m,所以即解得10d35.故当d10时, r 最大, 即圆面积最大,所以当OM10 m时, 圆形爱护区的面积最大方法二:(1)如图所示, 延长 OA, CB 交于点F.因为 tanFCO,所以sinFCO, cosFCO.因为OA60,OC170,所以OFOC tanFCO, CF, 从而AFOFOA.因为OAOC, 所以cosAFB sinFCO.又因为 ABBC,所
16、以BFAFcosAFB, 从而BCCFBF150.因此新桥BC的长是150 m.(2)设爱护区的边界圆 M与BC的切点为D,连接 MD,则MDBC,且MD是圆M的半径,并设MDr m,OMd m (0d60)因为OAOC, 所以sinCFOcosFCO.故由(1)知sinCFO, 所以r.因为O和A到圆M上随意一点的间隔 均不少于80 m,所以即解得10d35.故当d10时, r最大,即圆面积最大,所以当OM10 m时, 圆形爱护区的面积最大20、2014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(
17、2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A,B两点,若PAB的面积为2,求C的标准方程20解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线的交点分别为,其围成的三角形的面积S.由xy42x0y0知当且仅当x0y0时x0y0有最大值,即S有最小值,因此点P的坐标为(,)(2)设C的标准方程为1(ab0),点A(x1,y1),B(x2,y2)由点P在C上知1,并由得b2x24x62b20.又x1,x2是方程的根,所以由y1x1,y2x2,得|AB|x1x2|.由点P到直线l的间隔 为及SP
18、AB|AB|2,得|AB|,即b49b2180,解得b26或3,因此b26,a23(舍)或b23,a26,从而所求C的方程为1.20、2014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积20解:(1)圆C的方程可化为x2(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则CM(x,y4),MP(2x,2y)由题设知CMMP0,故x(2x)(y4)(2y)0,即(x1)2(y3)22.由于点P在圆C的内部,所以M的轨迹方程是(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 文科 模拟 分类 汇编 单元 解析几何
限制150内