人教版小学数学知识点总结2.docx
《人教版小学数学知识点总结2.docx》由会员分享,可在线阅读,更多相关《人教版小学数学知识点总结2.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版小学数学学问点大全第一章 数和数的运算 一.概念 (一)整数 1、 整数的意义 自然数和0都是整数。 2 、自然数 我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 、数位 计数单位依据肯定的依次排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如153=5,所以15能被3整除,3能整除15
2、。 假如数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是互相依存的。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 能被2整除的数叫做偶数,不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶
3、数。 一个数,假如只有1和它本身两个因数,这样的数叫做质数,100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。 一个数,假如除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。假如把自然数按其因数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。 把一个合数用质因数相乘的
4、形式表示出来,叫做分解质因数。 例如把28分解质因数 28=227几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种状况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,假如几个数中随意两个都互质,就说这几个数两两互质。 假如较小数是较大数的
5、因数,那么较小数就是这两个数的最大公因数。 假如两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。 假如较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。假如两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。 (二)小数 1 、小数的意义 把整数1平均分成10份、100份、1000份 得到的非常之几、百分之
6、几、千分之几 可以用小数表示。 一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几 在小数里,每相邻两个计数单位之间的进率都是10。小数局部的最高分数单位“非常之一”和整数局部的最低单位“一”之间的进率也是10。 2、小数的分类 循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。 (三)分数 1 、分数的意义 把单位“1”平均分成若
7、干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 、分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 (四)百分数 1 、表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用%来表示。百分号是表示百分数的符号。
8、二.方法 (一)数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先依据个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3. 小数的读法:读小数的时候,整数局部依据整数的读法读,小数点读作“点”,小数局部从左向右顺次读出每一位数位上的数字。 4. 小数的写法:写小数的时候,整数局部依据整数的写法来写,小数点写在个位右下角,小数局部顺次写出每一个数位上的数字。5. 分数的读法:读分数时,先读分母再读“分之”然后读
9、分子,分子和分母依据整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最终写分子,依据整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时依据整数的读法来读。 8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 (二)数的改写 一个较大的多位数,为了读写便利,经常把它改写成用“万”或“亿”作单位的数。有时还可以依据须要,省略这个数某一位后面的数,写成近似数。 1. 精确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的精确数。 例如把 1254300000 改写成以万
10、做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2. 近似数:依据实际须要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;假如尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 (三)数的互化 1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点
11、作分子,能约分的要约分。 2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。 3. 一个最简分数,假如分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;假如分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4. 小数化成百分数:只要把小数点向右挪动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左挪动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约
12、分的要约成最简分数。 (四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,始终除到商是质数为止,再把除数和商写成连乘的形式。 2. 求几个数的最大公因数的方法是:先用这几个数的公约数连续去除,始终除到所得的商只有公因数1为止,然后把全部的除数连乘求积,这个积就是这几个数的的最大公约数 。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的局部数)的公约数去除,始终除到互质(或两两互质)为止,然后把全部的除数和商连乘求积,这个积就是这几个数的最小公倍数。 4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时
13、,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三.性质和规律 (一)商不变的规律 商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小一样的倍,商不变。 (二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的挪动引起小数大小的变更 1. 小数点向右挪动一位,原来的数就扩大10倍;小数点向右挪动两位,原来的数就扩大100倍;
14、2. 小数点向左挪动一位,原来的数就缩小10倍;小数点向左挪动两位,原来的数就缩小100倍; 3. 小数点向左移或者向右移位数不够时,要用“0补足位。 (四)分数的根本性质 分数的根本性质:分数的分子和分母都乘以或者除以一样的数(零除外),分数的大小不变。 (五)分数与除法的关系 1. 被除数除数= 被除数/除数 2. 因为零不能作除数,所以分数的分母不能为零。 3. 被除数相当于分子,除数相当于分母。 四 运算的意义 (一)整数四则运算 1 整数加法:把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是局部数,和是总数。 加数+加数=和 一个加数=和另一个
15、加数 2 整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是局部数。 3 整数乘法:求几个一样加数的和的简便运算叫做乘法。 在乘法里,一样的加数和一样加数的个数都叫做因数。一样加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。 一个因数 一个因数 =积 一个因数=积另一个因数 4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 在除法里,0不能做除数。
16、因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 被除数除数=商 除数=被除数商 被除数=商除数 (二)小数四则运算 1. 小数加法:小数加法的意义与整数加法的意义一样。是把两个数合并成一个数的运算。 2. 小数减法:小数减法的意义与整数减法的意义一样。已知两个加数的和与其中的一个加数,求另一个加数的运算. 3. 小数乘法:小数乘整数的意义和整数乘法的意义一样,就是求几个一样加数和的简便运算;一个数乘纯小数的意义是求这个数的非常之几、百分之几、千分之几是多少。 4. 小数除法:小数除法的意义与整数除法的意义一样,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (
17、三)分数四则运算 1. 分数加法:分数加法的意义与整数加法的意义一样。 是把两个数合并成一个数的运算。 2. 分数减法:分数减法的意义与整数减法的意义一样。已知两个加数的和与其中的一个加数,求另一个加数的运算。 3. 分数乘法:分数乘法的意义与整数乘法的意义一样,就是求几个一样加数和的简便运算。 4. 乘积是1的两个数叫做互为倒数。 5. 分数除法:分数除法的意义与整数除法的意义一样。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 (四)运算定律 1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 2. 加法结合律:三个数相加,先把前两个数相加,再加上第
18、三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。 4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) 。5. 乘法安排律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc 。 6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去全部减数的和,差不变,即a-b-c=a-(b+c) 。(五)运算法则 1. 回忆整数加法、减法、乘法
19、的计算法则:2. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位; 假如不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。假如哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。 3. 小数乘法法则:先依据整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;假如位数不够,就用“0”补足。 4. 除数是整数的小数除法计算法则:先依据整数除法的法则去除,商的小数点要和被除数的小数点对齐;假如除到被除数的末尾仍有余数,就在余数后面添“0”,再接着除。 5. 除数是小数的除法计算法则:先挪动除数的小数点,使它变成整数,除数
20、的小数点也向右挪动几位(位数不够的补“0”),然后依据除数是整数的除法法则进展计算。 6. 异分母分数加减法计算方法:先通分,然后依据同分母分数加减法的的法则进展计算。 7. 带分数加减法的计算方法:整数局部和分数局部分别相加减,再把所得的数合并起来。 10. 分数乘法的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 12. 分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 (六) 运算依次 1. 没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。 2. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最终算括号外面的。
21、 第二章 度量衡 一 长度 单位之间的换算 * 1厘米 10 毫米 * 1分米 10 厘米 * 1米 1000 毫米 * 1千米 1000 米 二 面积 (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的外表的多少的测量一般称外表积。 (二)常用的面积单位 * 平方厘米 * 平方分米 * 平方米 * 平方千米 (三)面积单位的换算 * 1平方分米=100平方厘米 * 1平方米 100 平方分米 * 1公倾 10000 平方米 * 1平方千米 100 公顷 三 体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能包容物体的体积,通常叫做它们的
22、容积。 (二)常用单位 1 体积单位 * 立方米 * 立方分米 * 立方厘米 2 容积单位 * 升 * 毫升 (三)单位换算 1 体积单位 * 1立方米=1000立方分米 * 1立方分米=1000立方厘米 2 容积单位 * 1升 =1000毫升 * 1升 =1立方米 * 1毫升=1立方厘米 四 质量 * 1吨=1000千克 * 1千克 = 1000克 五 时间 * 1世纪=100年 * 1年=365天 平年 * 一年=366天 闰年 * 1天= 24小时 * 1小时=60分 * 1分=60秒 第三章 代数初步学问 一、用字母表示数 1 用字母表示数的意义和作用 * 用字母表示数,可以把数量关系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 小学 数学 知识点 总结
限制150内