人教版高中数学必修1全册导学案.docx
《人教版高中数学必修1全册导学案.docx》由会员分享,可在线阅读,更多相关《人教版高中数学必修1全册导学案.docx(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、111集合的含义教学目的: (1)初步理解集合的含义,知道常用数集及其记法.,初步理解“ 关系的意义.。.(2)通过实例,初步体会元素及集合的属于关系,从视察分析集合的元素入手,正确地理解集合.(3)视察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描绘客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(5)在学习运用集合语言的过程中,增加相识事物的实力,初步培育实事求是、扎实严谨的科学看法.学习重点:集合概念的形成。学习难点:理解集合的元素的确定性和互异性.学习过程一自主学习阅读课本,完成以下问题 :1、 例3到例8和
2、例12是否具有一样的特点,它们能否构成集合,假如能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。2、一般地,我们把讨论对象称为 .,把一些元素组成的总体叫做 。3、集合的元素必需是 不能确定的对象不能构成集合。 4、集合的元素肯定是 的,一样的几个对象归于同一个集合时只能算作一个元素。5、集合通常用大写的拉丁字母表示,如 。元素通常用小写的拉丁字母表示,如 。 6、假如 a是集合A 的元素,就说 a属于A ,记作 ,读作 。假如 a不是集合 A的元素,就说 a不属于A ,记作 ,读作 。 7、非负整数集或自然数集 ,正整数集 ,整数集 ,有理数集 ,有理数集 ,实数集 。 二
3、合作讨论1、以下元素全体是否构成集合,并说明理由1世界上最高的山 2世界上的高山。(3) 的近似值 (4)爱好唱歌的人 5本届奥运会我国获得优秀成果的运发动。6本届奥运会我国参与的全部运开工程。2、结合详细例子,请你说明你对集合中元素具有的互异性和确定性的理解。3、假如用A表示高一3班全体学生组成的集合,用a表示高一3班的一位同学,b是高一4班的一位同学,那么a, b及集合A有什么关系?由此可见元素及集合间有什么关系?4、请你指出以下集合中的元素。1小于10的全部自然数组成的集合; 2方程x=x的全部实数根组成的集合;3由120以内的全部素数组成的集合; 4方程x-2=0的全部实数根组成的集合
4、; 5由大于10小于20的全部整数组成的集合。 三稳固练习1、用“或“符号填空: (1)3 .Q (2 )3 N ; (3 ) Q (4 ) R ; ( 5) Z (6 ) () N 2、集合A:比3的倍数小1的全部的数(1)5 A, (2 )7 A , (3 )-10 A. 预习集合的表示法。111集合表示法教学目的:1驾驭集合的表示方法,能选择自然语言、图形语言、集合语言列举法或描绘法描绘不同的详细问题2开展运用数学语言的实力,感受集合语言的意义和作用,学习从数学的角度相识世界3通过合作学习培育合作精神学习重点:集合的表示方法,即运用集合的列举法及描绘法,正确表示一些简洁的集合学习难点:难
5、点是集合特征性质的概念,以及运用特征性质描绘法表示集合学习过程一自主学习阅读课本,完成以下问题 1.集合的表示方法(1)列举法: 把 一一列举出来,写在 内,用逗号隔开。2描绘法:把集合中的元素的公共属性描绘出来,写在大括号内,详细方法在大括号内先写上表示这个集合元素的 .及取值或改变范围,再画一条竖线,在竖线后写出这个集合中元素所具有的 。 x I | p(x) 其中:1x 是集合中元素的代表形式,2I是x 的范围,3p(x)是集合中元素 的共同特征,4竖线不行省略。思索?1、 x | x=3及 y | y=3是否是同一集合? 2、y | y=x2及x,y| y=x2 是否是同一集合?二 合
6、作讨论1、用列举法表示以下集合:1小于10的全部自然数组成的集合; 2方程x=x的全部实数根组成的集合;3由120以内的全部素数组成的集合; 4方程x-2=0的全部实数根组成的集合; 5由大于10小于20的全部整数组成的集合。2、试用描绘法表示以下集合:1) 方程x-2=0的全部实数根组成的集合; 2) 全部的奇数;全部偶数;比3的倍数多一的整数3) 不等式x-100的解集 4)一次函数y=2x+1图象上的全部的点。 思索?请你结合详细例子,试比较用自然语言、列举法、描绘法表示集合时,各自的特点和适用对象。 自己举几个集合的例子,并分别用自然语言,列举法和描绘法表示出来。三稳固练习 1、A=x
7、x=3k-1,kZ,用“或“符号填空:(1 ) 5 A, (2 ) 7 A , (3 ) -10 A.2、试选择适当的方法表示以下集合:1) 由小于8的全部素数组成的集合 2) 一次函数y=x+3及y=-2x+6的图象的交点组成的集合;3) 不等式4x-53,B=xx5,C=xx7 (6) A=xx+2(x+1)=0,B=-1,-2例2 写出集合a, b的全部子集,并指出哪些是它的真子集 例3 集合A=xx b , B=xx 3,假设,,那么务实数b的范围 ?三稳固练习1用适当的符号填空:1a a,b,c 20 xx=0 3 xRx+1=0,40,1 N (5) 0 xx=x 62,1 xx-
8、3x+2=0 (7)集合A=x2x-3 3x,B=xx 2,那么有: -4 B -3 A 2 B B A (8) 集合A= xx-1=0,那么有: 1 A, -1 A , A , -1,1 A (9) xx是菱形 xx 是平行四边形 ;xx是等腰三角形 xx是等边三角形 2写出集合a ,b , c的全部子集,并指出哪些是它的真子集(四)个人收获及问题:学问:方法:我的问题:五拓展实力1.集合A=-1,2x-1,3,B=3, x2假设,那么务实数x ?2集合A=x2-x0, B=xax =1,假设,,那么务实数a的范围 ?集合的运算运用说明:“自主学习15分钟,发觉问题,小组讨论,展示个人成果,
9、老师对重点概念点评。 “合作探究10分钟,小组讨论,互督互评,展示个人成果,老师对重点讲评。 “稳固练习5分钟,组长负责,组内点评。 “个人总结5分钟,根据组内讨论状况,指出对规律,方法理解不到位的问题。 实力展示5分钟,老师作出总结性点评。通过本节学习应到达如下目的:(1)理解两个集合的交集、并集、补集的含义.(2)会求两个集合的交集、并集、补集.(3)能运用Venn图表达集合间的运算.(4)通过复习集合及集合间的关系,比照数或式的算术运算和代数运算,探究集合之间的运算.(5)运用最根本的集合语言表示有关的数学对象的过程,体会集合语言,开展运用数学语言进展沟通的实力(6)通过直观图的运用培育
10、学生的探究精神.学习重点:集合的交、并、补运算学习难点:补集的运算.学习过程自主学习:1、试用Venn图表示集合A,B可能的关系。2、并集: 叫做A,B的并集,记作 读作A并B. 即AB= , 用Venn图表达如图1 AB BA 交集: 叫做A,B的交集 记作 读作A交B,即AB= 用Venn图表达如图23、全集: 那么称这个给定的集合为全集 (1)AB BA 4、补集: ,叫做A在U中的补集,记作 用Venn图表达如图3 (2)UCAA二 合作讨论 (3) 1、求以下集合A及B的交集、并集(1) A=4,5,6,8 B=3,5,7,8 3(2) A= x|-1x2 B= x|1x32、新华中
11、学开运动会,设A= x|x是新华中学高一年级参与百米赛跑的同学B= x| x是新华中学高一年级参与跳高竞赛的同学,求AB.3、设平面内直线L上点的集合为L,直线L上点的集合为L,试用集合的运算表示L, L的位置关系.4、设U=x|x是小于9的正整数, A=1,2,3, B=3,4,5,6,求CUA, CUB, AU, U(AB)5、设全集U=x|x是三角形, A=x|x是锐角三角形, B=x|x是钝角三角形, 求AB, CU (AB)三稳固练习 1、设A=3,5,6,8, B=4,5,7,8,求AB, AB2、 设A=x|x-4x-5=0, B=x|x=1, 求AB, AB3、A=x|x是等腰
12、三角形, B=x|x是直角三角形, 求AB, AB.4. 全集U=1,2,3,4,5,6,7, A=2,4,5, B=1,3,5,7,求ACB,( CA)(CB)5、设集合A=x|2x4, B=x|3x-78-2x, 求AB, AB6、设S=x|x是平行四边形或梯形, A=x|x是平行四边形, B=x|x是菱形,C=x|x是矩形, 求CB, CB ,CA .(四)个人收获及问题学问:方法:我的问题:五拓展实力 1. 设集合A=x|(x-3)(x-a)=0,B=x|(x-4)(x-1)=0, 求AB, AB 2. 全集U= AB=xN|0x10, A(CB)=1,3,5,7,试求集合B.1.2.
13、1函数的概念运用说明:“自主学习15分钟,发觉问题,小组讨论,展示个人成果,老师对重点概念点评。 “合作探究7分钟,小组讨论,互督互评,展示个人成果,老师对重点讲评。 “稳固练习10分钟,组长负责,组内点评。 “个人总结3分钟,根据组内讨论状况,指出对规律,方法理解不到位的问题。 实力展示5分钟,老师作出总结性点评。通过本节学习应到达如下目的:1通过丰富实例,进一步体会函数是描绘变量之间的依靠关系的重要数学模型,在此根底上学惯用集合及对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2理解构成函数的要素;3会求一些简洁函数的定义域和值域;4可以正确运用“区间的符号表示某些函数的定义域学
14、习重点:理解函数的模型化思想,用合及对应的语言来刻画函数;学习难点:符号“y=f(x)的含义,函数定义域和值域的区间表示;学习过程(一)自主学习: 思索?分析、归纳课本上的三个实例,变量之间有什么样的共同点?三个实例又有什么不同之处?1 函数的概念:一般的,我们有:设A,B是 ,假如根据某种确定的 f,使对于集合A中的 ,在集合B中都有 和它对应,那么就称 为从集合A到集合B的一个函数,记作 其中 叫做自变量,x的取值范围A叫做 ,及x的值相对应的y 值叫做 ,函数值的集合 叫做函数的 。明显,值域是集合B的子集。留意: “y=f(x)是函数符号,可以用随意的字母表示,如“y=g(x);函数符
15、号“y=f(x)中的f(x)表示及x对应的函数值,一个数,而不是f乘x2.构成函数的三要素: , , .3. 函数相等:假设两个函数的 一样,且 在本质上也是一样的,那么称两个函数相等。4.一次函数、二次函数、反比例函数的定义域和值域:y=ax+b(a0)y=ax+bx+c(a0)y=(k0)定义域值 域读课本完成下面两个表格。x|axbx|axbx|axbx|axb区间类型区间表示数轴表示将以下集合用区间表示并在数轴上表示x|2x4x|1x2.5x|x3x|x0时,求f(a), f(a-1)的值。例2. 以下函数中哪个及函数y=x相等(1)y=() ; (2)y= ; (3) y=; (4)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 必修 全册导学案
限制150内