人教版高中数学知识点总结新.docx
《人教版高中数学知识点总结新.docx》由会员分享,可在线阅读,更多相关《人教版高中数学知识点总结新.docx(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学 必修学问点第一章 集合及函数概念【】集合的含义及表示 集合的概念 集合中的元素具有确定性、互异性和无序性.常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.集合及元素间的关系对象及集合的关系是,或者,两者必居其一.集合的表示法 自然语言法:用文字表达的形式来描绘集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描绘法:具有的性质,其中为集合的代表元素.图示法:用数轴或韦恩图来表示集合.集合的分类含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集().【】集合间的根本关系子集、真子集、集合相等名称
2、记号意义性质示意图子集或中的任一元素都属于()()()假设且,那么()假设且,那么或真子集或,且中至少有一元素不属于为非空子集()假设且,那么集合相等中的任一元素都属于,中的任一元素都属于()()集合有个元素,那么它有个子集,它有个真子集,它有个非空子集,它有非空真子集.【】集合的根本运算交集、并集、补集名称记号意义性质示意图交集且 并集或 补集 【补充学问】含肯定值的不等式及一元二次不等式的解法含肯定值的不等式的解法不等式解集或把看成一个整体,化成,型不等式来求解一元二次不等式的解法判别式二次函数的图象一元二次方程的根其中无实根的解集或的解集函数及其表示【】函数的概念函数的概念设、是两个非空
3、的数集,假如根据某种对应法那么,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应包括集合,以及到的对应法那么叫做集合到的一个函数,记作函数的三要素:定义域、值域和对应法那么只有定义域一样,且对应法那么也一样的两个函数才是同一函数区间的概念及表示法设是两个实数,且,满意的实数的集合叫做闭区间,记做;满意的实数的集合叫做开区间,记做;满意,或的实数的集合叫做半开半闭区间,分别记做,;满意的实数的集合分别记做留意:对于集合及区间,前者可以大于或等于,而后者必需求函数的定义域时,一般遵循以下原那么:是整式时,定义域是全体实数是分式函数时,定义域是使分母不为零的一实在数是偶次根式时
4、,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于中,零负指数幂的底数不能为零假设是由有限个根本初等函数的四那么运算而合成的函数时,那么其定义域一般是各根本初等函数的定义域的交集对于求复合函数定义域问题,一般步骤是:假设的定义域为,其复合函数的定义域应由不等式解出对于含字母参数的函数,求其定义域,根据问题详细状况需对字母参数进展分类探讨由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义求函数的值域或最值求函数最值的常用方法和求函数值域的方法根本上是一样的事实上,假如在函数的值域中存在一个最小大数,这个数就是
5、函数的最小大值因此求函数的最值及值域,其本质是一样的,只是提问的角度不同求函数值域及最值的常用方法: 视察法:对于比较简洁的函数,我们可以通过视察干脆得到值域或最值配方法:将函数解析式化成含有自变量的平方式及常数的和,然后根据变量的取值范围确定函数的值域或最值判别式法:假设函数可以化成一个系数含有的关于的二次方程,那么在时,由于为实数,故必需有,从而确定函数的值域或最值不等式法:利用根本不等式确定函数的值域或最值换元法:通过变量代换到达化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:利用函数和它的反函数的定义域及值域的互逆关系确定函数的值域或最值数形结
6、合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法【】函数的表示法函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系映射的概念设、是两个集合,假如根据某种对应法那么,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应包括集合,以及到的对应法那么叫做集合到的映射,记作给定一个集合到集合的映射,且假如元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象函数的根本性质【】单调性及最大小值函数的单调性定义
7、及断定方法函数的性 质定义图象断定方法函数的单调性假如对于属于定义域内某个区间上的随意两个自变量的值、,当 时,都有()(),那么就说()在这个区间上是增函数利用定义利用函数的单调性利用函数图象在某个区间图 象上升为增利用复合函数假如对于属于定义域内某个区间上的随意两个自变量的值、,当(),那么就说()在这个区间上是减函数利用定义利用函数的单调性利用函数图象在某个区间图象下降为减利用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数对于复合函数,令,假设为增,为增,那么为增;假设为减,为减,那么为增;假设为增,为减
8、,那么为减;假设为减,为增,那么为减打“函数的图象及性质分别在、上为增函数,分别在、上为减函数最大小值定义 一般地,设函数的定义域为,假如存在实数满意:对于随意的,都有; 存在,使得那么,我们称是函数 的最大值,记作一般地,设函数的定义域为,假如存在实数满意:对于随意的,都有;存在,使得那么,我们称是函数的最小值,记作【】奇偶性函数的奇偶性定义及断定方法函数的性 质定义图象断定方法函数的奇偶性假如对于函数()定义域内随意一个,都有()(),那么函数()叫做奇函数利用定义要先推断定义域是否关于原点对称利用图象图象关于原点对称假如对于函数()定义域内随意一个,都有()(),那么函数()叫做偶函数利
9、用定义要先推断定义域是否关于原点对称利用图象图象关于轴对称假设函数为奇函数,且在处有定义,那么奇函数在轴两侧相对称的区间增减性一样,偶函数在轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数或奇函数的和或差仍是偶函数或奇函数,两个偶函数或奇函数的积或商是偶函数,一个偶函数及一个奇函数的积或商是奇函数补充学问函数的图象作图利用描点法作图:确定函数的定义域; 化解函数解析式;探讨函数的性质奇偶性、单调性; 画出函数的图象利用根本函数图象的变换作图:要精确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种根本初等函数的图象平移变换伸缩变换对称变换识图对于给定函数的图象
10、,要能从图象的左右、上下分别范围、改变趋势、对称性等方面探讨函数的定义域、值域、单调性、奇偶性,留意图象及函数解析式中参数的关系用图 函数图象形象地显示了函数的性质,为探讨数量关系问题供应了“形的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法第二章 根本初等函数()指数函数【】指数及指数幂的运算根式的概念假如,且,那么叫做的次方根当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;的次方根是;负数没有次方根式子叫做根式,这里叫做根指数,叫做被开方数当为奇数时,为随意实数;当为偶数时,根式的性质:;当为奇数时,;当为偶数时,
11、 分数指数幂的概念正数的正分数指数幂的意义是:且的正分数指数幂等于正数的负分数指数幂的意义是:且的负分数指数幂没有意义 留意口诀:底数取倒数,指数取相反数分数指数幂的运算性质【】指数函数及其性质指数函数函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的改变状况改变对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低对数函数【】对数及对数运算(1) 对数的定义 假设,那么叫做以为底的对数,记作,其中叫做底数,叫做真数负数和零没有对数对数式及指数式的互化:几个重要的对数恒等式常用对数及自然对数常用对数:,
12、即;自然对数:,即其中对数的运算性质 假如,那么加法: 减法:数乘: 换底公式:【】对数函数及其性质对数函数函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的改变状况改变对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高()反函数的概念设函数的定义域为,值域为,从式子中解出,得式子假如对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成反函数的求法确定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数
13、的定义域反函数的性质 原函数及反函数的图象关于直线对称函数的定义域、值域分别是其反函数的值域、定义域假设在原函数的图象上,那么在反函数的图象上一般地,函数要有反函数那么它必需为单调函数幂函数幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数幂函数的图象幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:全部的幂函数在都有定义,并且图象都通过点 单调性:假如,那么幂函数的图象过原点,并且在上为增函数假如,那么
14、幂函数的图象在上为减函数,在第一象限内,图象无限接近轴及轴奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当其中互质,和,假设为奇数为奇数时,那么是奇函数,假设为奇数为偶数时,那么是偶函数,假设为偶数为奇数时,那么是非奇非偶函数图象特征:幂函数,当时,假设,其图象在直线下方,假设,其图象在直线上方,当时,假设,其图象在直线上方,假设,其图象在直线下方补充学问二次函数二次函数解析式的三种形式一般式:顶点式:两根式:求二次函数解析式的方法三个点坐标时,宜用一般式抛物线的顶点坐标或及对称轴有关或及最大小值有关时,常运用顶点式假设抛物线及轴有两个交点,且横线坐标时,选用两根式求更便利二次
15、函数图象的性质二次函数的图象是一条抛物线,对称轴方程为顶点坐标是当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,二次函数当时,图象及轴有两个交点一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分学问在初中代数中虽有所涉及,但尚不够系统和完好,且解决的方法侧重于二次方程根的判别式和根及系数关系定理韦达定理的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程的两实根为,且令,从以下四个方面来分析此类问题:开口方向: 对称轴位置: 判别式: 端点函数值符号 有且仅有一个根或满意或 ()()
16、,并同时考虑()或()这两种状况是否也符合此结论可干脆由推出 二次函数在闭区间上的最值 设在区间上的最大值为,最小值为,令当时开口向上假设,那么 假设,那么 假设,那么-=()()假设,那么 ,那么()当时(开口向下)假设,那么 假设,那么 假设,那么假设,那么 ,那么第三章 函数的应用一、方程的根及函数的零点、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象及轴交点的横坐标。即:方程有实数根函数的图象及轴有交点函数有零点、函数零点的求法:求函数的零点: 代数法求方程的实数根; 几何法对于不能用求根公式的方程,可以将它及函数的图
17、象联络起来,并利用函数的性质找出零点、二次函数的零点:二次函数,方程有两不等实根,二次函数的图象及轴有两个交点,二次函数有两个零点,方程有两相等实根二重根,二次函数的图象及轴有一个交点,二次函数有一个二重零点或二阶零点,方程无实根,二次函数的图象及轴无交点,二次函数无零点高中数学 必修学问点第一章 空间几何体柱、锥、台、球的构造特征空间几何体的三视图和直观图 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 画三视图的原那么: 长对齐、高对齐、宽相等直观图:斜二测画法斜二测画法的步骤:.平行于坐标轴的线依旧平行于坐标轴;.平行于轴的线长度变半,平行于,轴的线长度不变;.画法要写好
18、。 用斜二测画法画出长方体的步骤:画轴画底面画侧棱成图 空间几何体的外表积及体积一 空间几何体的外表积棱柱、棱锥的外表积: 各个面面积之和 圆柱的外表积 圆锥的外表积 圆台的外表积 球的外表积二空间几何体的体积柱体的体积 锥体的体积 台体的体积 球体的体积 第二章 直线及平面的位置关系空间点、直线、平面之间的位置关系 平面含义:平面是无限延展的 平面的画法及表示平面的画法:程度放置的平面通常画成一个平行四边形,锐角画成,且横边画成邻边的倍长如图平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面、平面等。 三个公理:公理:
19、假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为 公理作用:推断直线是否在平面内公理:过不在一条直线上的三点,有且只有一个平面。符号表示为:、三点不共线 有且只有一个平面,使、。公理作用:确定一个平面的根据。公理:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为: ,且公理作用:断定两个平面是否相交的根据 空间中直线及直线之间的位置关系 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。 公理:平行于同一条直线的两条直线互相平行。符
20、号表示为:设、是三条直线强调:公理本质上是说平行具有传递性,在平面、空间这特性质都适用。公理作用:推断空间两条直线平行的根据。 等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补 留意点: 及所成的角的大小只由、的互相位置来确定,及的选择无关,为简便,点一般取在两直线中的一条上; 两条异面直线所成的角(, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作; 两条直线互相垂直,有共面垂直及异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 空间中直线及平面、平面及平面之间的位置关系、直线及平面有三种位置关系:直线在平面内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 知识点 总结
限制150内