《苏教版小学六年级数学总复习资料.docx》由会员分享,可在线阅读,更多相关《苏教版小学六年级数学总复习资料.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学数学毕业总复习资料常用的数量关系式1、工作效率工作时间工作总量 工作总量工作效率工作时间工作总量工作时间工作效率 2、因数因数积 积一个因数另一个因数 3、被除数除数商 被除数商除数 商除数被除数商除数余数被除数4、总数总份数平均数 5、和差问题的公式 和差2大数 和差2小数 6、和倍问题 和倍数1小数 小数倍数大数 或 和小数大数7、差倍问题 差倍数1小数 小数倍数大数 或 小数差大数 8、相遇问题:相遇路程速度和相遇时间 相遇时间相遇路程速度和速度和相遇路程相遇时间 9、浓度问题:盐的重量水的重量盐水的重量 盐的重量盐水的重量100%浓度 盐水的重量浓度盐的重量 盐的重量浓度盐水的重量
2、10、利润及折扣问题 利润售价本钱 利润率利润本钱100% 或利润率(售出价本钱1)100% 11、利息本金利率时间 税后利息本金利率时间(15%)图形计算公式 1、正方形 C:周长 S:面积 a:边长 周长边长4 4a 面积=边长边长 a 或22、正方体 V:体积 a:棱长 外表积=棱长棱长6 S表a6 或S表=6a2体积=棱长棱长棱长 aa 或33、长方形C:周长 S:面积 a:长 b:宽周长=长+宽2 2 面积=长宽 4、长方体V:体积 S:面积 a:长 b:宽 h:高外表积=长宽+长高+宽高2 2体积=长宽高 5、三角形 S:面积 a:底 h:高面积=底高2 2 或三角形的高=面积2底
3、 三角形的底=面积2高 6、平行四边形 S:面积 a:底 h:高 面积=底高 7、梯形 S:面积 a:上底 b:下底 h:高 面积=上底+下底高2 h2 或 h8、圆形 S:面积 C:周长 :圆周率 d:直径 r:半径 周长=直径=2半径 2r 面积=半径半径 r29、圆柱体 V:体积 h:高 S:底面积 r:底面半径 C:底面周长 侧面积=底面周长高 或2 外表积=侧面积+底面积2 22r2或2r2或2rhr体积=底面积高 r2h或体积侧面积2半径 2r10、圆锥体 V:体积 h:高 S:底面积 r:底面半径 体积=底面积高3 r2h常用单位换算长度单位换算:1千米=1000米 1米=10分
4、米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体容积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算:1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算:1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 大月31天有:135781012月 小月30天的有:46911月 平年2月28天,闰年2月29天
5、平年全年365天,闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 根底学问第一章 数一、整数 1.自然数:在数物体的时候,用来表示物体个数的1,2,3叫做自然数。 一个物体也没有,用0表示。0也是自然数。 2.计数单位:一个、十、百、千、万、十万、百万、千万、亿都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 3.数位:计数单位依据肯定的依次排列起来,它们所占的位置叫做数位。 4.数的整除:整数a除以整数bb0,除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。假如数a能被数bb0整除,a就叫做b的倍数,b就
6、叫做a的因数或a的约数。倍数和因数是互相依存的。如:因为35能被7整除,所以35是7的倍数,7是35的因数。 5.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。 6.一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。如:3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。 7.个位上是0、2、4、6、8的数,都能被2整除,如:202、480、304,都能被2整除。 8.个位上是0或5的数,都能被5整除,如:5、30、405都能被5整除。9.一个数的各位上的数的和能被3整
7、除,这个数就能被3整除,如:12、108、204都能被3整除。 10.一个数各位数上的和能被9整除,这个数就能被9整除。 11.能被3整除的数不肯定能被9整除,但是能被9整除的数肯定能被3整除。 12.一个数的末两位数能被4或25整除,这个数就能被4或25整除。如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 13.一个数的末三位数能被8或125整除,这个数就能被8或125整除。如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 14.能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自
8、然数按能否被2 整除的特征可分为奇数和偶数。 15.一个数,假如只有1和它本身两个因数,这样的数叫做素数或质数,100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 16.一个数,假如除了1和它本身还有别的因数,这样的数叫做合数,如:4、6、8、9、12都是合数。 17.1不是素数也不是合数,自然数除了0和1外,不是素数就是合数。18.每个合数都可以写成几个素数相乘的形式。其中每个素数都是这个合数的因数,叫做这个合数的质因数,如15=35,3和5 叫做15的质因数。 19.把一个合
9、数用质因数相乘的形式表示出来,叫做分解质因数。如:把28分解质因数 28=22720.几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。 21.公因数只有1的两个数,叫做互质数,成互质关系的两个数,有以下几种状况: 11和任何自然数互质。 如1和102相邻的两个自然数互质。 如8和93两个不同的素数互质。 如11和194当合数不是素数的倍数时,这个合数和这个素数互质。 如16和55两个合数的公因数只有1时,这两个合数互质。
10、 如4和922.假如较小数是较大数的因数,那么较小数就是这两个数的最大公因数。23.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。24.假如较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。25.假如两个数是互质数,那么这两个数的积就是它们的最小公倍数。 如8和9,最小公倍数是7226.几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。 二、小数 1.小数的意义 把整数1平均分成10
11、份、100份、1000份 得到的非常之几、百分之几、千分之几 可以用小数表示。 一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“非常之一和整数部分的最低单位“一之间的进率也是10。 数的分类 纯小数:整数部分是零的小数,叫做纯小数。如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 如: 3.25 、 5.26 都是带小数。 有限小数:小数部分
12、的数位是有限的小数,叫做有限小数。如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。如: 4.33 3.1415926 无限不循环小数:小数部分数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 如: 循环小数:小数部分有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 如: 3.555 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 如: 3.99 的循环节是“ 9 , 0.5454 的循环节是“ 54 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。如: 3.111 0.5
13、656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。如:3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。假如循环节只有一个数字,就只在它的上面点一个点。三、分数1.分数的意义:把单位“1平均分成假设干份,表示这样的一份或者几份的数叫做分数。 分母表示把单位“1平均分成多少份;分子表示有这样的多少份。 把单位“1平均分成假设干份,表示其中的一份的数,叫做分数单位。 2.分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
14、假分数大于或等于1。 带分数:假分数可以写成整数及真分数合成的数,通常叫做带分数。 3.约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 四、百分数 1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%来表示。第二章 方法 一、数的读法和写法 1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先依据个级的读法去读,再在后面加“亿或“万字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 2.整数的写法:从高位到
15、低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3.小数的读法:读小数的时候,整数部分依据整数的读法读,小数点读作“点,小数部分从左向右顺次读出每一位数位上的数字。 4.小数的写法:写小数的时候,整数部分依据整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。二、数的改写 1.近似数:依据实际须要,把一个较大的数省略某一位后面的尾数,用近似数来表示。 如:1302490015 省略亿后面的尾数是 13 亿。 2.四舍五入法:要省略的尾数数位上的数是4 或者比4小,就把尾数去掉;假如尾数数位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。如:省
16、略 345900 万后面的尾数约是 35 万。 3.大小比较 1比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分一样的,非常位上的数大的那个数就大;非常位上的数也一样的,百分位上的数大的那个数就大 2比较分数的大小:分母一样的分数,分子大的分数比较大;分子一样的数,分母小的分数大。分数的分母和分子都不一样的,先通分再比较。 三、数的互化 1.小数化分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2.分数化小数:用分母去除分子。不能除尽的,一般保存三位小数。 3.一个最简分数,假如分母中除了2和5以外,不含有其他的质因数,这个
17、分数就能化成有限小数。 4.小数化百分数:只要把小数点向右挪动两位,同时在后面添上百分号。 5.百分数化小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左挪动两位。 6.分数化百分数:通常先把分数化成小数除不尽时,通常保存三位小数),再把小数化成百分数。 7.百分数化小数:先把百分数改写成分数,能约分的要约成最简分数。 四、数的整除 因数的方法是:先用这几个数的公因数连续去除,始终除到所得的商只有公因数1为止,然后把全部的除数连乘求积,这个积就是这几个数的的最大公因数 。 3.求几个数的最小公倍数的方法是:先用这几个数或其中的部分数的公因数去除,始终除到互质为止,然后把全部的除数和商连
18、乘,这个积就是这几个数的最小公倍数。 五、约分和通分 约分的方法:用分子和分母的公因数1除外去除分子、分母;通常要除到得出最简分数为止。 通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。六、用字母表示数的写法 数字和字母、字母和字母相乘时,乘号可以记作“.,或者省略不写,数字要写在字母的前面。 当“1及任何字母相乘时,“1省略不写。 在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。 用含有字母的式子表示问题的答案时,除数一般写成分母,假如式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。 七、方程和
19、方程的解 1.方程:含有未知数的等式叫做方程。 方程是等式,又含有未知数,两者缺一不行。 2.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 3.解方程:求方程的解的过程叫做解方程。 4.列方程解应用题的步骤 审题找等量关系写设句列方程解方程检验写答句八、比和比例 1.比的意义:两个数相除又叫做两个数的比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。比的后项不能是零。 依据分数及除法的关系,可知比的前项相当于分子,后项相
20、当于分母,比值相当于分数值。 2.比的性质:比的前项和后项同时乘上或者除以一样的数0除外,比值不变,这叫做比的根本性质。 3.求比值和化简比 求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。 依据比的根本性质可以把比化成最简洁的整数比。它的结果必需是一个最简比,即前、后项是互质数。 4.比例尺=图上间隔 :实际间隔 ;图上间隔 和比例尺务实际间隔 用除法;实际间隔 和比例尺求图上间隔 用乘法。 线段比例尺:在图上附有一条注有数量的线段,用来表示和地面上相对应的实际间隔 。 5.按比例安排:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 6.比
21、例的意义和性质 1比例的意义:表示两个比相等的式子叫做比例。两端的两项叫做外项,中间的两项叫做内项。 2比例的性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的根本性质。 3解比例:依据比例的根本性质,假如比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 7.正比例和反比例 1成正比例的量 两种相关联的量,一种量变更,另一种量也随着变更,假如这两种量中相对应的两个数的比值也就是商肯定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示肯定 2成反比例的量 两种相关联的量,一种量变更,另一种量也随着变更,假如这两种量中相对应的两个
22、数的积肯定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x肯定第三章 性质和规律 一、商不变的规律 商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小一样的倍,商不变。 二、小数的性质 小数的性质:在小数的末尾添上零或者去掉零,小数的大小不变。 三、小数点位置的挪动引起小数大小的变更 1.小数点向右挪动一位,原来的数就扩大10倍;小数点向右挪动两位,原来的数就扩大100倍;小数点向右挪动三位,原来的数就扩大1000倍 2.小数点向左挪动一位,原来的数就缩小10倍;小数点向左挪动两位,原来的数就缩小100倍;小数点向左挪动三位,原来的数就缩小1000倍 3.小数点向左移
23、或者向右移位数不够时,要用“0补足数位。 四、分数的根本性质 分数的根本性质:分数的分子和分母都乘以或者除以一样的数零除外,分数的大小不变。 第四章 运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即 。 2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即。 3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即aa。 4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即abbc。5.乘法安排律:两个数的和及一个数相乘,可以把两个加数分别及这
24、个数相乘再把两个积相加,即c 。 6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去全部减数的和,差不变,即() 。第五章 运算法那么 1.整数加法计算法那么:一样数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2.整数减法计算法那么:一样数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一当十,和本位上的数合并在一起,再减。 3.整数乘法计算法那么:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 4.整数除法计算法那么:先从被除数的高位除起,除数是几位数,就看被除数的前几
25、位;假如不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。假如哪一位上不够商1,要补“0占位。每次除得的余数要小于除数。 5.小数乘法法那么:先依据整数乘法的计算法那么算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;假如位数不够,就用“0补足。 6.除数是整数的小数除法计算法那么:先依据整数除法的法那么去除,商的小数点要和被除数的小数点对齐;假如除到被除数的末尾仍有余数,就在余数后面添“0,再接着除。 7.除数是小数的除法计算法那么:先挪动除数的小数点,使它变成整数,除数的小数点也向右挪动几位位数不够的补“0,然后依据除数是整数的除法法那么进展计算。 :同分母分
26、数相加减,只把分子相加减,分母不变。 :先通分,然后依据同分母分数加减法的的法那么进展计算。 :分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 :甲数除以乙数0除外,等于甲数乘乙数的倒数。 第六章 运算依次 1. 小数四那么运算的运算依次和整数四那么运算依次一样。 2. 分数四那么运算的运算依次和整数四那么运算依次一样。 3. 没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。 4. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最终算括号外面的。 5. 第一级运算:加法和减法叫做第一级运算
27、。 6. 第二级运算:乘法和除法叫做第二级运算。第七章 几何的初步学问 一、平面图形1.线直线没有端点;长度无限;过一点可以画多数条,过两点只能画一条直线。 射线只有一个端点;长度无限。 线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。 在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。 两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 从直线外一点到这条直线所画的垂线的长叫做这点到直线的间隔 。 2.角:从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。 3.角的分
28、类 锐角:小于90的角叫做锐角。 直角:等于90的角叫做直角。 钝角:大于90而小于180的角叫做钝角。 平角:角的两边成一条直线,这时所组成的角叫做平角。平角180。 周角:角的一边旋转一周,及另一边重合。周角是360。 4.长方形:对边相等,4个角都是直角的四边形。有两条对称轴。 5.正方形:四条边都相等,四个角都是直角的四边形。有4条对称轴。6.三角形:三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。 按角分分成锐角、直角、钝角三类锐角三角形 :三个角都是锐角。 直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。 钝角三角形:有一个角是
29、钝角。 按边分不等边和等腰两类,等边是等腰的特别状况。 不等边三角形:三条边长度不相等。 等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。 等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。 7.平行四边形:两组对边分别平行的四边形。相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形简洁变形。 8.梯形:只有一组对边平行的四边形。等腰梯形有一条对称轴。 9.圆:平面上的一种曲线图形。 圆中心的一点叫做圆心。一般用字母o表示。 半径:连接圆心和圆上随意一点的线段叫做半径。一般用r表示。 在同一个圆里,有多数条半径,每条半径的长度都相等。 通过圆心并
30、且两端都在圆上的线段叫做直径。一般用d表示。 同一个圆里有多数条直径,全部的直径都相等。 同一个圆里,直径等于两个半径的长度,即2r。 圆的大小由半径确定。圆有多数条对称轴。 10.圆的画法:把圆规的两脚分开,定好两脚间的间隔 即半径;把有针尖的一只脚固定在一点即圆心上; 把装有铅笔尖的一只脚旋转一周,就画出一个圆。 11.圆的周长:围成圆的曲线的长叫做圆的周长。把圆的周长和直径的比值叫做圆周率。用字母表示。 12.圆的面积:圆所占平面的大小叫做圆的面积。 13.环形:由两个半径不相等的同心圆相减而成,有多数条对称轴。计算公式:(R 14.轴对称图形: 假如一个图形沿着一条直线对折,两侧的图形
31、可以完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 正方形有4条对称轴, 长方形有2条对称轴。 等腰三角形有2条对称轴,等边三角形有3条对称轴。 等腰梯形有一条对称轴,圆有多数条对称轴。 菱形至少有2条对称轴当菱形是正方形时,就4条对称轴,扇形和半圆有一条对称轴。 二、立体图形1.长方体六个面都是长方形有时有两个相对的面是正方形。 相对的面面积相等,有12条棱,相对的4条棱长度相等。有8个顶点。 相交于一个顶点的三条棱的长度分别叫做长、宽、高。两个面相交的边叫做棱。三条棱相交的点叫做顶点。 把长方体放在桌面上,最多只能看到三个面。长方体或者正方体6个面的总面积,叫做它的外表积
32、。 2.正方体六个面都是正方形,六个面的面积相等,有12条棱,棱长都相等,有8个顶点。正方体可以看作特别的长方体。 3.圆柱:圆柱的上下两个面叫做底面。圆柱有一个曲面叫做侧面。圆柱两个底面之间的间隔 叫做高 。 材料测算时用进一法:实际中,运用的材料都要比计算的结果多一些,因此,保存数的时候,要向前一位进1。4.圆锥:圆锥的底面是个圆,圆锥的侧面是个曲面。从圆锥的顶点究竟面圆心的间隔 是圆锥的高。 第八章 简洁的统计 一、统计表 一般分为表特别和表格内两部分。表特别部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。 单式统计表:只含有一个工程的统计表。复式统
33、计表:含有两个或两个以上统计工程的统计表。 二、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。 1.条形统计图:用一个单位长度表示肯定的数量,依据数量的多少画成长短不同的直条,然后把这些直线依据肯定的依次排列起来。 优点:很简洁看出各种数量的多少。 留意:画条形统计图时,直条的宽窄必需一样。 取一个单位长度表示数量的多少要依据详细状况而确定; 复式条形统计图中表示不同工程的直条,要用不同的线条或颜色区分开,并在制图日期下面注明图例。 2.折线统计图:用一个单位长度表示肯定的数量,依据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且可以清晰地表示出数量增减变更的状况。 制作折线统计图的一般步骤:依量描点顺次连线标明数据3.扇形统计图:用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清晰地表示出各部分同总数之间的关系。第九章 确定位置1.数对先列,后行2.确定位置要素:1方向2间隔 第十章 图形变换1.图形变换的状况:轴对称、平移、旋转、放大、缩小变更后:变更前2.图形变换不变更图形形态,只变更图形位置或大小。
限制150内