人教版高中数学知识点汇总.docx
《人教版高中数学知识点汇总.docx》由会员分享,可在线阅读,更多相关《人教版高中数学知识点汇总.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学主要学问点必修1数学学问第一章、集合与函数概念1.1.1、集合1、 把探讨的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描绘法.1.1.2、集合间的根本关系1、 一般地,对于两个集合A、B,假如集合A中随意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、 假如集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、 把不含任何元素的集合叫做空集.记作:.并规定:空集合是
2、任何集合的子集.4、 假如集合A中含有n个元素,则集合A有个子集.1.1.3、集合间的根本运算1、 一般地,由全部属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、 一般地,由属于集合A且属于集合B的全部元素组成的集合,称为A与B的交集.记作:.3、全集、补集?运算类型交 集并 集补 集定 义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成的
3、集合,叫做S中子集A的补集(或余集)记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 1.2.1、函数的概念1、 设A、B是非空的数集,假如依据某种确定的对应关系,使对于集合A中的随意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.假如两个函数的定义域一样,并且对应关系完全一样,则称这两个函数相等.1.2.2、函数的表示法1、 函数的三
4、种表示方法:解析法、图象法、列表法.1.3.1、单调性与最大(小)值单调性的定义:见书P281、 留意函数单调性证明的一般格式: 解:设且,则:=1.3.2、奇偶性1、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.第二章、根本初等函数()2.1.1、指数与指数幂的运算1、 一般地,假如,那么叫做 的次方根。其中.2、 当为奇数时,; 当为偶数时,.3、 我们规定:4、 运算性质:2.1.2、指数函数及其性质1、 记住图象:相关性质:2.2.1、对数与对
5、数运算1、; 2、. 3、,.4、当时:5、换底公式:. 6、2.2.2、对数函数及其性质1、 记住图象:相关性质:2.3、幂函数1、几种幂函数的图象:根本初等函数的图像和根本性质表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数减函数增函数表2幂函数奇函数偶函数第一象限性质减函数增函数过定点第三章、函数的应用3.1.1、方程的根与函数的零点1、方程有实根函数的图象与轴有交点 函数有零点.2、 性质:假如函数在区间 上的图象是连绵不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根.3.1.2、用二分法求方程的近似解1、驾驭二分法.3.2.1、几类不
6、同增长的函数模型3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最终检验.必修2数学学问点1、空间几何体的构造常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。棱柱:有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的局部,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照耀下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的
7、外表积与体积圆柱侧面积; 圆锥侧面积: 圆台侧面积:体积公式:球的外表积和体积: .第二章:点、直线、平面之间的位置关系1、公理1:假如一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:断定:平面外一条
8、直线与此平面内的一条直线平行,则该直线与此平面平行。性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。10、面面平行:断定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。性质:假如两个平行平面同时和第三个平面相交,那么它们的交线平行。11、线面垂直:定义:假如一条直线垂直于一个平面内的随意一条直线,那么就说这条直线和这个平面垂直。断定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。性质:垂直于同一个平面的两条直线平行。12、面面垂直:定义:两个平面相交,假如它们所成的二面角是直二面角,就说这两个平面相互垂直。断定:一个平面经过另一个
9、平面的一条垂线,则这两个平面垂直。性质:两个平面相互垂直,则一个平面内垂直于交线的直线垂直于另一个平面。第三章:直线与方程1、倾斜角与斜率: 2、直线方程:点斜式: 斜截式: 两点式:一般式:3、对于直线:有:; 和相交; 和重合; .4、对于直线:有:; 和相交;和重合; .5、两点间间隔 公式:6、点到直线间隔 公式:第四章:圆与方程1、圆的方程:标准方程:一般方程:.2、两圆位置关系:外离:; 外切:; 相交:;内切:; 内含:.3、空间中两点间间隔 公式:必修3数学学问点第一章:算法1、算法三种语言:自然语言、流程图、程序语言;2、算法的三种根本构造: 依次构造、选择构造、循环构造3、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 知识点 汇总
限制150内