平面向量测试题高考经典试题附详细答案.docx
《平面向量测试题高考经典试题附详细答案.docx》由会员分享,可在线阅读,更多相关《平面向量测试题高考经典试题附详细答案.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面对量高考经典试题石柱县民族中学 冉龙安一、选择题1(全国1文理)已知向量,则与 xkb123 A垂直 B不垂直也不平行 C平行且同向 D平行且反向解已知向量,则与垂直,选A。 xkb123 2、(山东文5)已知向量,若与垂直,则( )AB CD4【答案】:C【分析】:,由与垂直可得:, 。3、(广东文4理10)若向量满意,的夹角为60,则=_;答案:;解析:,4、(天津理10) 设两个向量和其中为实数.若则的取值范围是( )A.B.C.D.【答案】A【分析】由可得,设代入方程组可得消去化简得,再化简得再令代入上式得可得解不等式得因此解得.故选A5、(山东理11)在直角中,是斜边上的高,则下
2、列等式不成立的是(A) (B) (C) (D) 【答案】:C.【分析】: ,A是正确的,同理B也正确,对于D答案可变形为,通过等积变换推断为正确.6、(全国2 理5)在ABC中,已知D是AB边上一点,若=2,=,则l=(A)(B) (C) -(D) -解在ABC中,已知D是AB边上一点,若=2,=,则=, l=,选A。7、(全国2理12)设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则|FA|+|FB|+|FC|=(A)9(B)6(C) 4 (D) 3解设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则F为ABC的重心, A、B、C三点的横坐标的和为F点横
3、坐标的3倍,即等于3, |FA|+|FB|+|FC|=,选B。8、(全国2文6)在中,已知是边上一点,若,则( )ABCD解在ABC中,已知D是AB边上一点,若=2,=,则=, l=,选A。9(全国2文9)把函数的图像按向量平移,得到的图像,则( )ABCD解把函数y=ex的图象按向量=(2,3)平移,即向右平移2个单位,向上平移3个单位,平移后得到y=f(x)的图象,f(x)= ,选C。 10、(北京理4)已知是所在平面内一点,为边中点,且,那么()解析:是所在平面内一点,为边中点, ,且, ,即,选A11、(上海理14)在直角坐标系中,分别是与轴,轴平行的单位向量,若直角三角形中,则的可能
4、值有A、1个 B、2个 C、3个 D、4个【答案】B 【解析】解法一: (1) 若A为直角,则; (2) 若B为直角,则;(3) 若C为直角,则。所以 k 的可能值个数是2,选B 解法二:数形结合如图,将A放在坐标原点,则B点坐标为(2,1),C点坐标为(3,k),所以C点在直线x=3上,由图知,只可能A、B为直角,C不行能为直角所以 k 的可能值个数是2,选B12、(福建理4文8)对于向量,a 、b、c和实数,下列命题中真命题是A 若,则a0或b0 B 若,则0或a0C 若,则ab或ab D 若,则bc解析:ab时也有ab0,故A不正确;同理C不正确;由ab=ac得不到b=c,如a为零向量或
5、a与b、c垂直时,选B13、(湖南理4)设是非零向量,若函数的图象是一条直线,则必有( )ABCD【答案】A 【解析】,若函数的图象是一条直线,即其二次项系数为0, 0, 14、(湖南文2)若O、E、F是不共线的随意三点,则以下各式中成立的是 A B. C. D. 【答案】B 【解析】由向量的减法知15、(湖北理2)将的图象按向量平移,则平移后所得图象的解析式为()答案:选解析:法一 由向量平移的定义,在平移前、后的图像上随意取一对对应点,则,带入到已知解析式中可得选 法二 由平移的意义可知,先向左平移个单位,再向下平移2个单位。16、(湖北文9)设a=(4,3),a在b上的投影为,b在x轴上
6、的投影为2,且|b|1,则b为A.(2,14)B.(2,- ) C.(-2, ) D.(2,8)答案:选B解析:设a在b的夹角为,则有|a|cos=,=45,因为b在x轴上的投影为2,且|b|1,结合图形可知选B17、(浙江理7)若非零向量满意,则() 【答案】:C【分析】:由于是非零向量,则必有故上式中等号不成立 。 。故选C.18、(浙江文9) 若非零向量满意,则() 【答案】:A【分析】:若两向量共线,则由于是非零向量,且,则必有a=2b;代入可知只有A、C满意;若两向量不共线,留意到向量模的几何意义,故可以构造如图所示的三角形,使其满意OB=AB=BC;令a, b,则a-b, a-2b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 测试 高考 经典 试题 详细 答案
限制150内