物理化学知识点归纳.docx
《物理化学知识点归纳.docx》由会员分享,可在线阅读,更多相关《物理化学知识点归纳.docx(73页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章 热力学第肯定律一、 热力学根本概念1. 状态函数状态函数,是指状态所持有的、描绘系统状态的宏观物理量,也称为状态性质或状态变量。系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的变更为定值;系统复原原来状态,状态函数亦复原到原值。2. 热力学平衡态在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变更,则称系统处于热力学平衡态。热力学平衡须同时满意平衡(T=0)、力平衡(p=0)、相平衡(=0)和化学平衡(G=0)4个条件。 二、热力学第肯定律的数学表达式1.U=Q+W或dU=Q+W=Q-pambdV+W规定系统吸热为正,放热为负。系统得功
2、为正,对环境做功为负。式中pamb为环境的压力,W为非体积功。上式适用于封闭系统的一切过程。2体积功的定义和计算系统体积的变更而引起的系统和环境交换的功称为体积功。其定义式为:W=-pambdV(1) 气体向真空膨胀时体积功所的计算W=0(2) 恒外压过程体积功W=pamb(V1-V2)=-pambV对于志向气体恒压变温过程W=-pV=-nRT(3) 可逆过程体积功Wr=(4)志向气体恒温可逆过程体积功 Wr=-nRTln(V1/V2)=-nRTln(p1/p2)(5)可逆相变体积功W=-pdV三、恒热容、恒压热,焓1.焓的定义式HU + p V2焓变(1)H=U+(pV) 式中(pV)为p
3、V乘积的增量,只有在恒压下(pV)=p(V2-V1)在数值上等于体积功。(2)H=此式适用于志向气体单纯pVT变更的一切过程,或真实气体的恒压变温过程,或纯的液、固态物质压力变更不大的变温过程。3. 内能变(1)U=Qv式中Qv为恒热容。此式适用于封闭系统,W=0、dV=0的过程。 U=式中为摩尔定容热容。此式适用于n、CV,m恒定,志向气体单纯p、V、T变更的一切过程。4. 热容(1) 定义当一系统由于加给一微小的热容量Q而温度上升dT时,Q/dT这个量即热容。(2) 摩尔定容热容CV,mCV,m=CV/n=()V (封闭系统,恒容,W非=0)(3)摩尔定压热容Cp,mCp,m= (封闭系统
4、,恒压,W非=0)(4) Cp, m与 CV,m的关系系统为志向气体,则有Cp, mCV,m=R系统为凝合物质,则有Cp, mCV,m0(5)热容与温度的关系,通常可以表示成如下的阅历式Cp, m=a+bT+cT2或Cp, m=a+bT+cT-2式中a、b、c、b与c对指定气体皆为常数,运用这些公式时,要留意所适用的温度范围。(6)平均摩尔定压热容p,mp,m=(T2-T1)四、志向气体可逆绝热过程方程 上式=/,称为热容比(以前称为绝热指数),以上三式适用于为常数,志向气体可逆绝热过程,p,V,T的计算。五、反响进度=nB/vB上式适用于反响开场时的反响进度为零的状况,nB=nB-nB,0,
5、nB,0为反响前B的物质的量。B为B的反响计算数,其量纲为1。的单位为mol。六、热效应的计算1.不做非体积功的恒压过程Qp=H=2.不做非体积功的恒容过程Qv=U=3.化学反响恒压热效应与恒容热效应关系Qp- Qv=(n)RT4.由标准摩尔生成焓求标准摩尔反响焓变=5由标准摩尔燃烧焓求标准摩尔反响焓变=6. 与温度的关系基希霍夫方程的积分形式(T2)= (T1)+ 基希霍夫方程的微分形式d=rdT=七、体积功(1)定义式或 (2) 适用于志向气体恒压过程。(3) 适用于恒外压过程。(4) 适用于志向气体恒温可逆过程。(5) 适用于为常数的志向气体绝热过程。典型题示例 1-1 1mol 志向气
6、体于27 、101325Pa状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ,则压力升到1013.25kPa。求整个过程的W、Q、U与H。已知该气体的CV,m 恒定为20.92Jmol-1 K-1。 解题思路:需先利用志向气体状态方程计算有关状态: (T1=27, p1=101325Pa,V1)(T2=27, p2=p外=,V2=) (T3=97, p3=1013.25kPa,V3= V2) 1-2水在 -5 的结冰过程为不行逆过程,计算时要利用0 结冰的可逆相变过程,即H1H2O(l,1 mol,-5 , ) H2O(s,1 mol,-5,)H3 H2 H4H2O(l,1 mol
7、, 0,) H2O(s,1 mol,0,) H1=H2H3H41-3 在 298.15K 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 119.50kJ 的热量。忽视压力对焓的影响。 (1) 计算甲醇的标准燃烧焓 。 (2) 已知298.15K时 H2O(l) 和CO2(g)的标准摩尔生成焓分别为285.83 kJmol1 、393.51 kJmol1,计算CH3OH(l)的。(3) 假如甲醇的标准蒸发焓为 35.27kJmol1,计算CH3OH(g) 的。解:(1) 甲醇燃烧反响:CH3OH(l) +O2(g) CO2(g) + 2H2O(l) =119.50
8、 kJ/(5.27/32)mol =725.62 kJmol1=+ = (725.620.58.3145298.15103)kJ.mol1 =726.86 kJmol 1(2) =(CO2) + 2(H2O ) CH3OH(l) CH3OH (l) = (CO2) + 2 (H2O ) = 393.51+2(285.83)(726.86) kJmol1 =238.31 kJmol1(3) CH3OH (l) CH3OH (g) , = 35.27 kJ.mol1 CH3OH (g) =CH3OH (l) + = (38.31+35.27)kJ.mol 1 =203.04 kJmol1第三章 热
9、力学第二定律一、 卡诺循环1 热机效率=-W/Q1=(Q1+Q2)/Q1=(T1-T2)/T1式中Q1和Q2分别为工质在循环过程中从高温热源T1汲取热量和向低温热源T2放出热量这两个过程的可逆热。此式适用于在两个不同的温度之间工作的热机所进展的一切可逆循环。2卡诺循环全部工作于两个确定温度之间的热机,以可逆热机效率最大。1rr即是Q1/T1+Q2/T2 0式中T1、T2为凹凸温热源的温度。可逆时等于系统的温度。二、热力学第二定律1.克劳修斯说法“不行能把热从低温物体传到高温物体而不产生其他影响。”2.开尔文说法“不行能从单一热源汲取热量使之完全转变为功而不产生其他影响。”三、熵1.熵的定义d
10、SQ r/T式中Q r为系统与环境交换的可逆热,T为可逆热Q r时系统的温度。2.克劳修斯不等式dS3.熵判据Siso=Ssys+Samb式中iso、sys和amb分别代表隔离系统、系统和环境。在隔离系统中,不行逆过程即自发过程。可逆,即系统内部与系统与环境之间处于平衡态。在隔离系统中,一切自动进展的过程都是向熵增大的方向进展,这称为熵增原理。此式只适用于隔离系统。四、熵变的计算1.单纯的PVT变更过程中无相变更和化学变更,W=0,可逆。S=志向气体系统S=nCV,mln+nRln= nCp,mln- nRln= n Cp ,m l n+ n CV ,m ln恒温(T1=T2)S= nRln=
11、- nRln恒压(p1=p2)S= nCp,mln= n Cp ,m l n恒容(V1=V2)S= nCV,mln= n CV ,m ln凝合相系统S=恒容S =恒压S=恒温S=Q r/T2.相变更可逆变更S=H/T不行逆相变,通常设计一条要包括可逆相变步骤在内的可逆途径,此可逆途径的热温熵才是该不行逆过程的熵变。3.环境熵差与隔离系统熵差的计算Samb= Qamb/ Tamb=- Qsys / TambSiso=Samb+Ssys4.化学反响的标准反响熵=若在温度区间T1T2内,全部反响物与产物均不发生相变更,则(T2)=(T1)+五、热力学第三定律 (完备晶体,T)=0或 (完备晶体,0K
12、)=0 上式中符号*代表纯物质。上述两式只适用于完备晶体。六、亥姆霍兹函数1. 亥姆霍兹函数定义式AU-TS式中A为系统的亥姆霍兹函数,U为系统的内能;TS为系统温度与规定熵的乘积。2. 亥姆霍兹函数判据dAT,V0在恒温恒容且不涉与非体积功时,才能用A推断过程的方向性。若T,VA0,则说明在指定的始末态之间处于平衡态。3. 恒温可逆过程,系统的亥姆霍兹函数变更等于此过程的可逆功Wr。七、吉布斯(Gibbs)函数1.吉布斯(Gibbs)函数的定义式GH-TSH、A与G皆为组合函数,它们皆是系统具有广延性质的状态,而且皆具有能量的单位。状态肯定,它们皆应有确定的数值,但它们的肯定值既无法测定,也
13、无法求算。2. 吉布斯(Gibbs)函数数据dGT,P0在恒温恒压且不涉与非体积功时,才可用G来推断过程的方向性,在此条件下过程的方向性,在此条件下过程只能向吉布斯函数G削减的方向进展。3. GT,P=Wr在恒温恒压下,过程的吉布斯函数等于始末状态间过程的可逆非体积功。在恒温恒压可逆的条件下,此等式才成立。八、热力学根本方程d U=T d S-p d Vd A=-S d T-p d Vd H=T d S-V d pd G=-S d T+V d p热力学根本公式的适用条件为封闭的热力学平衡系统的可逆方程。不仅适用于肯定量的单相纯物质,或组成恒定的多组分系统发生单纯p、V、T变更的可逆过程,也可适
14、用于相平衡或化学平衡的系统由一平衡状态变为另一平衡状态的可逆方程。九、克拉佩龙方程1. 克拉佩龙方程dp/dT=/(T)此方程适用于纯物质的相和相的两相平衡。2.克劳修斯-克拉佩龙方程dln(p/p)=( vapHm/RT2)dTln(p2/p1)=( vapHm /R)(1/T1=1/T2)此式适用于气-液(或气-固)两相平衡;气体可视为志向气体;(l)与(g)相比拟可忽视不计;在T1T2的温度范围内摩尔蒸发焓可视为常数。对于气-固平衡,上式的vapHm则应改为固体的摩尔升华焓。十、吉布斯-亥姆霍兹方程=-U/T2=-H/T2 这两个方程分别表示了A/T在恒容下随T的变更与G/T在恒压下随T
15、的变更。十一、麦克斯韦关系式-(/)S=(/)V(/)S=(/)p- (/)p=(/)T(/)V=(/)T这4个偏微分方程称为麦克斯韦关系式。物质的量恒定的单相纯物质,只有pVT变更的一切过程,上述4式皆可适用。对于混合系统,则要求系统的组成恒定,式中V与S分别为系统总体积与总的规定熵。典型题示例 2-1 5mol某志向气体( Cp,m = 20.10 JK1mol1),由始态 ( 400K,200kPa) 经恒容加热到终态 (600K) 。试计算该过程的W、Q、U、H与 S。5 molT2=600Kp25 molT1=400Kp1=200kPadV=0 解: 2-2:已知水在0,100 kP
16、a下的熔化焓为6.009 kJmol1; 冰和水的平均摩尔热容分别为37.6和75.3JK1mol1。试计算 H2O( s,5,100kPa) H2O( l,5,100kPa)的H、S和G,并说明该过程能否自发进展 . 解法1:设计如下途径(以1mol为基准) H, SH2O(1mol, l, T1=5, 100kPa)H2O(1mol, l, T2=0, 100kPa)H2O(1mol, s, T2=0, 100kPa)H2O(1mol, s, T1=5, 100kPa)H2 ,S2H3S3H1S1 =所以过程不能进展解法2:若比拟熟识基尔霍夫公式的运用条件,可干脆利用d(DH)/dT=DC
17、p。当DCp 为常数时,积分得 其余步骤同解法1。2-3 1 mol志向气体始态为27、1MPa,令其抗拒恒定的0.2MPa外压;膨胀到体积为原来的5倍,压力与外压一样。 计算此过程的Q、W、U、H、S、A与 G。已知志向气体的恒容摩尔热容为12.471Jmol1K1。 解:系统的变更过程 : 根据志向气体状态方程 p1V1/T1 = p2 V2 / T2 可得T1=T2 = 300.15K即为等温过程( 这是解本题的关键! 若先算出V1,再算T2值,因为保存有效位数的不同引起计算误差,有可能出现T1T2)。 根据志向气体恒温时有H =U = 0 W =p外(V2V1) =(p1 /5)(5V
18、1V1) =0.8 p1V1 =0.8 nRT1 = 0.8 18.134 300.15 J =1996 J由第肯定律可得Q = UW = 1996 JS = nRln(V2/V1) = (18.314) JK1ln(5/1) = 13.38 JK1A = UTS = 0J300.15K13.38 JK1 =4016 JG = HTS = A =4016J 留意: 若要计算A或 G ,但没有给出肯定熵数值的过程, 必定是等温过程。第四章 多组分系统热力学一、 偏摩尔量XB其中X为广度量,如V,U,S全微分式dX=dT+dp+总和X=2.吉布斯杜亥姆方程在T、p肯定条件下,=0或=0此处,xB指
19、B的摩尔分数,XB指B的偏摩尔量。3.偏摩尔量间的关系=V=VB=-S=-SB二、化学式1、定义式混合物(或溶液)中组分B的偏摩尔吉布斯函数GB又称B的化学势。BGB=由热力学的4个根本方程可以得:B=2.化学势判据0(dT=0,dV=0,w=0)0(dT=0,dp=0,w=0)其中,B()指相内的B物质。三、气体组分的化学势1. 志向气体化学势(1)纯志向气体的化学势为*(pg)=+RTln(p/)*(pg)表示纯志向气体在温度T、压力p时的化学势。是纯志向气体在标准压力=100kPa下的化学势,即标准化学势。(2)混合志向气体中任一组分B的化学势为B(pg)=+RTln其中,pB=yB为B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理化学 知识点 归纳
限制150内