解三角形的知识点和题型汇总及练习.docx
《解三角形的知识点和题型汇总及练习.docx》由会员分享,可在线阅读,更多相关《解三角形的知识点和题型汇总及练习.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解三角形的学问点和题型汇总及练习一、学问必备:1直角三角形中各元素间的关系:在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bc
2、cosA; b2c2a22cacosB; c2a2b22abcosC。 3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和随意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三
3、边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要留意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。(2)断定三角形形态时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。二、典例解析题
4、型1:正、余弦定理例1(1)在中,已知,解三角形;(2)在中,已知cm,cm,解三角形。题型2:三角形面积例2在中,求的值和的面积。解法一:先解三角方程,求出角A的值。又, 解法二:由计算它的对偶关系式的值。 +得。 得。从而。题型3:三角形中的三角恒等变换问题例3在中,A、B、C所对的边分别是、,已知,则( )A. B. C. D.题型4:正、余弦定理推断三角形形态例4在ABC中,若2cosBsinAsinC,则ABC的形态确定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsinC =sin(AB)=sinAcosB+cosAsinBsi
5、n(AB)0,AB题型5:三角形中求值问题例5的三个内角为,求当A为何值时,获得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos获得最大值为。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。题型6:正余弦定理的实际应用例6如图,A,B,C,D都在同一个与程度面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 知识点 题型 汇总 练习
限制150内