《光电子材料与器件复习提纲.docx》由会员分享,可在线阅读,更多相关《光电子材料与器件复习提纲.docx(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、光电子材料与器件复习提纲Sciprince一、1、激光的原理、特点、本质P42、受激辐射三能级、四能级系统(为什么四能级系统效率高)3、固体激光器如何锁模P364、光谱线的宽度线性函数P55、均匀加宽(碰撞加宽、自然加宽)线性函数P56、增益饱和的物质实质二、 1、红宝石激光器P182、Nd3+:YAG激光器P183、自由电子激光器P22三、 1、横模选择技术P402、纵模选择技术P433、稳频技术P464、兰姆凹陷稳频P485、Q调制原理P256、锁模的基本原理P33四、 1、电光调制概念P532、怎么调制(怎么调,计算栅极调制和正负调制)3、光电振幅调制原理P534、电光效应P55五、 1
2、、声光衍射现象P632、耦合波理论和耦合波方程P643、磁光调制P684、Ramman-Nath衍射图P635、Bragg衍射图P64六、 1、光纤衰减P752、光纤弧子P76七、 1、光伏探测器2、 光电池P85八、1、光电子学研究对象F12、 爱因斯坦受激辐射理论P23、 几种激光器工作物质和原理P154、 声光调制概念P655、两种调制的区别6、光纤衰减有哪些(09诺贝尔)P757、光电转换器概念P848、哪几种物理效应P839、CCD工作原理,反型层,转移,P型n型,外加电压正负,栅极电压P88附件:由光学和电子学结合形成的技术学科。电磁波范围包括X射线、紫外光、可见光和红外线。光电子
3、学涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地指光-电转换器件及其应用的领域。光电子学还包括光电子能谱学,它利用光电子发射带出的信息研究固体内部和表面的成分和电子结构。光电子学及其系统的发展,依赖于光-电和电-光转换、光学传输、加工处
4、理和存储等技术的发展,其关键是光电子器件。光电子器件主要有作为信息载体的光源(半导体发光二极管、半导体激光器等)、辐射探测器(各种光-电和光-光转换器)、控制与处理用的元器件(各种反射镜、透镜、棱镜、光束分离器,滤光片、光栅、偏振片、斩光器、电光晶体和液晶等)、光学纤维(一维信息传输光纤波导、二维图像传输光纤束、光能传输光纤束、光纤传感器等)以及各种显示显像器件(低压荧光管、电子束管、白炽灯泡、发光二极管、场致发光屏、等离子体和液晶显示器件等)。将各类元器件按各种可能方式组合起来可构成各种具有重大应用价值的光电子学系统,如光通信系统、电视系统、微光夜视系统等。 由光学和电子学相结合而形成的新技
5、术学科。电磁波范围包括 X射线、紫外线、可见光和红外线。它涉及将这些辐射的光图像、信号或能量转换成电信号或电能,并进行处理或传送;有时则将电信号再转换成光信号或光图像。它以光波代替无线电波作为信息载体,实现光发射、控制、测量和显示等。通常有关无线电频率的几乎所有的传统电子学概念、理论和技术,如放大、振荡、倍频、分频、调制、信息处理、通信、雷达、计算机等,原则上都可以延伸到光波段。在激光领域中,激光器提供光频的相干电磁振荡源,光电子学是指光频电子学。光电子学有时也狭义地专指光- 电转换器件及其应用的领域。光电子学还包括光电子能谱学。它是利用光电子发射带出的信息来研究固体内部和表面的成分和电子结构
6、,如X射线光电子能谱学和紫外光电子能谱学。光电子学的应用非常广泛。已制成和正在研制的光电子器件品种繁多。从能源角度来看,可将光能转换成电能,或将电能转换成光能。前者有晶态和非晶态太阳能电池,小者可用于电子表和电子计算器,大者可制成太阳能电站;后者有以电驱动的发光光源,如放电灯、霓虹灯、荧光灯、场致或阴极射线发光屏、发光二极管等。从信息角度来看,可利用光发射、放大、调制、加工处理、存储、测量、显示等技术和元件,构成具有特定功能的光电子学系统。例如,利用光纤通信可以实现迅速和大容量信息传送的目的。它使原来类似的技术水平得到大幅度的提高。 人所接受的信息,大约80是由光通过眼睛输入的。然而,人眼的局
7、限性大大地限制了人类获得光信息的能力,因而需要扩展人眼的功能。第一,要扩展人眼在低照度下的视觉能力,提供各种夜视装备以便能在低照度下进行科研和生产活动,或在夜间进行侦察和战斗。第二,要扩展人眼对电磁波波段的敏感范围。已制成将红外线、紫外线和 X射线的光图像转换成可见光图像的直视式或电视式光电子学装置。利用这些原理还可以扩展到观察中子和其他带电粒子所形成的图像。第三,要扩展人眼对光学过程的时间分辨本领,例如已经做到在几十飞秒(10-15秒)内就可观察到信息的变化。 光电子学的发展,依赖于光-电和电-光转换、光学传输、加工处理和存储等技术的发展。这些技术所依据的物理现象和原理,主要是光与物质的相互作用。它涉及到折射和反射等光束的传播规律(几何光学);衍射、干涉、偏振和色散等光波的传播规律(物理光学);热辐射、光致发光、场致发光、电子轰击发光和受激辐射等发光规律;各类元激发、元激发之间的相互作用和动力学过程等的机理(量子光学);光电导、光电发射和光生电动势等光电转换机理;光全息技术;光学系统(应用光学)和光学系统的集成(集成光学);视觉过程和肉眼对光的反应(生理光学);以及对快速和微弱光电信息的探测和处理等。这些技术的使用还需要电子技术的配合,才能构成具有特殊功能的仪器、设备或系统。F为附件;P为按正反面每页9张PPT打印讲义时的页码。
限制150内