Zigbee无线传感器网络英文文献与翻译(15页).doc
《Zigbee无线传感器网络英文文献与翻译(15页).doc》由会员分享,可在线阅读,更多相关《Zigbee无线传感器网络英文文献与翻译(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-Zigbee Wireless Sensor Network in Environmental Monitoring ApplicationsI.ZIGBEE TECHNOLOGY Zigbee is a wireless standard based on IEEE802.15.4 that was developed to address the unique needs of most wireless sensing and control applications. Technology is low cost, low power, a low data rate, highly
2、 reliable, highly secure wireless networking protocol targeted towards automation and remote control applications. Its depicts two key performance characteristics wireless radio range and data transmission rate of the wireless spectrum. Comparing to other wireless networking protocols such as Blueto
3、oth, Wi-Fi, UWB and so on, shows excellent transmission ability in lower transmission rate and highly capacity of network.A. Zigbee Framework Framework is made up of a set of blocks called layers. Each layer performs a specific set of services for the layer above. As shown in Fig.1. The IEEE 802.15.
4、4 standard defines the two lower layers: the physical (PHY) layer and the medium access control (MAC) layer. The Alliance builds on this foundation by providing the network and security layer and the framework for the application layer.Fig.1 Framework The IEEE 802.15.4 has two PHY layers that operat
5、e in two separate frequency ranges: 868/915 MHz and 2.4GHz. Moreover, MAC sub-layer controls access to the radio channel using a CSMA-CA mechanism. Its responsibilities may also include transmitting beacon frames, synchronization, and providing a reliable transmission mechanism.B. Zigbees Topology T
6、he network layer supports star, tree, and mesh topologies, as shown in Fig.2. In a star topology, the network is controlled by one single device called coordinator. The coordinator is responsible for initiating and maintaining the devices on the network. All other devices, known as end devices, dire
7、ctly communicate with the coordinator. In mesh and tree topologies, the coordinator is responsible for starting the network and for choosing certain key network parameters, but the network may be extended through the use of routers. In tree networks, routers move data and control messages through th
8、e network using a hierarchical routing strategy. Mesh networks allow full peer-to-peer communication.Fig.2 Mesh topologies Fig.3 is a network model, it shows that supports both single-hop star topology constructed with one coordinator in the center and the end devices, and mesh topology. In the netw
9、ork, the intelligent nodes are composed by Full Function Device (FFD) and Reduced Function Device (RFD). Only the FFN defines the full functionality and can become a network coordinator. Coordinator manages the network, it is to say that coordinator can start a network and allow other devices to joi
10、n or leave it. Moreover, it can provide binding and address-table services, and save messages until they can be delivered.Fig.3 Zigbee network modelII.THE GREENHOUSE ENVIRONMENTAL MONITORINGSYSTEM DESIGN Traditional agriculture only use machinery and equipment which isolating and no communicating ab
11、ility. And farmers have to monitor crops growth by themselves. Even if some people use electrical devices, but most of them were restricted to simple communication between control computer and end devices like sensors instead of wire connection, which couldnt be strictly defined as wireless sensor n
12、etwork. Therefore, by through using sensor networks and, agriculture could become more automation, more networking and smarter. In this project, we should deploy five kinds of sensors in the greenhouse basement. By through these deployed sensors, the parameters such as temperature in the greenhouse,
13、 soil temperature, dew point, humidity and light intensity can be detected real time. It is key to collect different parameters from all kinds of sensors. And in the greenhouse, monitoring the vegetables growing conditions is the top issue. Therefore, longer battery life and lower data rate and less
14、 complexity are very important. From the introduction about above, we know that meet the requirements for reliability, security, low costs and low power.A. System Overview The overview of Greenhouse environmental monitoring system, which is made up by one sink node (coordinator), many sensor nodes,
15、workstation and database. Mote node and sensor node together composed of each collecting node. When sensors collect parameters real time, such as temperature in the greenhouse, soil temperature, dew point, humidity and light intensity, these data will be offered to A/D converter, then by through qua
16、ntizing and encoding become the digital signal that is able to transmit by wireless sensor communicating node. Each wireless sensor communicating node has ability of transmitting, receiving function. In this WSN, sensor nodes deployed in the greenhouse, which can collect real time data and transmit
17、data to sink node (Coordinator) by the way of multi-hop. Sink node complete the task of data analysis and data storage. Meanwhile, sink node is connected with GPRS/CDMA can provide remote control and data download service. In the monitoring and controlling room, by running greenhouse management soft
18、ware, the sink node can periodically receives the data from the wireless sensor nodes and displays them on monitors.B. Node Hardware Design Sensor nodes are the basic units of WSN. The hardware platform is made up sensor nodes closely related to the specific application requirements. Therefore, the
19、most important work is the nodes design which can perfect implement the function of detecting and transmission as a WSN node, and perform its technology characteristics. Fig.4 shows the universal structure of the WSN nodes. Power module provides the necessary energy for the sensor nodes. Data collec
20、tion module is used to receive and convert signals of sensors. Data processing and control modules functions are node device control, task scheduling, and energy computing and so on. Communication module is used to send data between nodes and frequency chosen and so on.Fig.4 Universal structure of t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Zigbee 无线 传感器 网络 英文 文献 翻译 15
限制150内