《电动机三种典型振动故障的诊断.docx》由会员分享,可在线阅读,更多相关《电动机三种典型振动故障的诊断.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电动机三种典型振动故障诊断1 引言某造纸厂一台电动机先后出现了三种典型振动故障:(1) 基础刚性差;(2) 电气故障;(3) 滚动轴承损坏。现将诊断分析及处理过程进行简单描述和总结:此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。电动机结构型式及技术参数如下:三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv极数:6 滚动轴承:联轴节端 nu244c3; 6244c3末端: nu244c3 (fag)针对本电
2、动机特点,采用entek data pactm 1500数据采集器9000a-lbv加速度传感器;enmoniter odyssey软件进行振动数据采集和分析:2 电动机基础刚性弱诊断过程2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点振动位移峰峰值(m p-p); 测量电动机两侧轴承座水平、垂直方向工频(1n)振动相位角。将电动机断电
3、,采集断电瞬间前后电动机振动频谱瀑布图。之后,重新找正对中,带负荷运行进行测试,测试内容同上。测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量数据如图2、图3所示。 图1图2 振动数据侧视图图3 俯视振动数据图图4 电动机m1-h点振动频谱图(2001年08月21日)电动机振幅径向方向大,轴向方向小。由图4可见。电动机单试时m1-h点振动频谱图可以看出工频成分是振动主要频率成分,高次谐波成分不明显,可排除存在松动碰磨以及对中问题可能性;50hz、100hz等市电频率谐波成分峰值较小,而且,在电动机断电瞬间前后变化不明显,通频幅值也无明显降低,由此可排除电磁激振力存在可能性;
4、 初步怀疑不平衡是主要激振力。为了能够准确找出引发电动机异常工频振动故障原因,有必要参考各测点振动相位。通过表1可以看出,电动机轴承座在水平垂直两方向振动相位是精确相同,而不是通常不平衡状态下相位差90,这说明电动机振动是一种定向振动,而不是单纯不平衡1。经检查,电动机各地脚螺栓均未发现松动迹象,基础台板及支撑柱振幅和电动机几乎相等,说明基础并未吸收电动机振动,而是同电动机一同作定向振动,这就反映出支撑基础较为薄弱,刚性不足(据了解,此电动机为临时增加设备,基础设计建造并未依据有关标准进行),容易在电动机振动激振力作用下,发生受迫振动,反过来又加剧电动机振动。在这种情况下长期运行容易造成电动机
5、及基础损坏,所以立即停机进行处理。厂方增加了混凝土中间支撑柱,以加强基础刚性。表2列出了基础加固后电动机各点振动数据,可以看出,经过基础加固后,电动机定向振动现象消失,振动状况明显改善。3 电动机电磁故障诊断过程此后电动机连续运转三个月后,因内部零件松动脱落而烧损。经电动机制造厂家检修后开车,振动较大。2002年1月6日对电动机作振动分析,进行和前次相同测试,发现振动随负荷增加而增加,周围楼板共振明显,中间支撑柱振幅较大。分析采集振动数据发现:参考图4(2001年8月21日对电动机测试时采集m1-h点振动频谱图),当时电动机振动工频幅值较高,其他频率幅值较小,无电磁方面异常。图5为2002年1
6、月6日采集m1-h点振动频谱图,此时通频幅值较前次增大,出现二倍频(33.10hz)并且幅值最高,同时出现了较多高频成分。 图5 电动机m1-h点振动频谱(2002年01月06日)50hz、100hz等市电频率及其谐波成分峰值较小,而且,在电动机断电瞬间前后变化不明显,通频幅值也无明显降低,由此可排除市电频率干扰可能性。为了判断二倍频产生原因,利用entek data pactm 1500数据采集器停车瀑布图采集功能,作出电动机断电过程振动频谱瀑布图(图略)。由此可以明显看出电动机断电前后振动变化。在断电瞬间,峰值一直较高二倍频立即大幅度减小(见图6),这说明二倍频不是由机械原因产生,而是由电
7、磁原因产生,可能原因有定子绕组不对称、磁极绕组存在匝间断路、气隙不均匀等2。二倍频是此电动机振动主要振动频率,在楼板上主要振动频率也是二倍频,楼板是受此频率激励而发生共振(见图7呈现出典型拍振波形,明显看出电动机和楼板共振),如果消除或减弱了此振动频率成分,就能避免或减轻基础共振,所以消除二倍频是减小电动机振动关键。图6 电动机m1-h点断电过程33.10hz频率峰值趋势图图7 电动机周围楼板振动时域波形图为了能够准确找出电动机电气故障,有必要对振动频谱进行细化分析。图8为m1-h点振动真细化频谱图,明显看到工频及二倍频两侧都有边频出现,经计算,边频为电动机转子偏心产生频率(pp)对各倍频调制
8、而出现,这是电动机转子偏心典型故障图谱。图中,pp为电动机转子偏心产生频率,lf为市电频率50hz,rpm为电动机工频。图9为50hz左右频谱放大显示,由此可以判断出此电动机目前还存在明显转子偏心缺陷。图8 电动机m1-h点振动真细化频谱图图9 电动机m1-h点振动频谱局部放大图4 电动机轴承故障诊断过程和此同时,特别针对此电动机滚动轴承进行测试和分析,应用entek公司特有振动尖峰能量(gse)频谱技术及分析软件odyssey附带丰富滚动轴承库数据,发现了电动机轴承损坏故障。图10是对m1-h点所作振动尖峰能量频谱,其中发现了轴承故障特征频率峰值:保持架故障特征频率ftf、轴承内圈故障特征频
9、率bpir存在,图11为m2-h点峰值振动尖峰能量频谱,同样发现了轴承故障特征频率峰值,说明电动机轴承已经发生了损伤。对此,建议更换电动机轴承,对电动机进行检查和检修,加强基础支撑刚性。图10 m1-h点振动尖峰能量频谱图(gse)图11 m2-h点振动尖峰能量频谱图(gse)但由于生产需要,厂方没有更换轴承,而是继续监护运行。两天后此电动机联锁停车,经拆检,发现联轴节侧轴承损坏,轴承内圈破裂,断裂碎块将电动机卡死,造成停车。5 结束语在对电动机进行振动故障诊断过程中, 应注意下几点:(1) 细致认真日常检测和维护是防止电动机故障有效手段;(2) 利用振动相位可以区分表现近似故障,如不平衡、基础刚性弱和对中不良等;(3) 分析电动机断电惰走振动频谱瀑布图是一个区分电磁故障和机械故障重要手段;(4) 当谱图中出现工频高次谐波频率成分时,有时和市电频率及其倍频相当接近,应对50hz、100hz作细化处理,如果电动机有电气方面故障,就会在此频率两边出现边频,只有通过细化处理才能够清晰显示出来;(5) 对于采用滚动轴承电动机,对轴承作尖峰能量(gse)幅值和频谱分析是判断轴承故障有力手段;(6) 应尽量采用多种检测手段对电动机故障进行分析,诸如噪声诊断,电流频谱诊断,温度检测,油液磨屑检测等。经过多角度分析,能够全面准确判断电动机故障原因。
限制150内