病理生理学简答题复习题.docx
《病理生理学简答题复习题.docx》由会员分享,可在线阅读,更多相关《病理生理学简答题复习题.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1、哪种类型的脱水渴感最明显?为什么?低容量性高钠血症渴感最明显。因低容量性高钠血症时,细胞外液钠浓度增高,渗透压增高,细胞内水分外移,下丘脑口渴中枢细胞脱水引起强烈的渴感。另外细胞外液钠浓度增高,也可直接刺激口渴中枢。2、急性低钾血症对神经肌肉有何影响,其机制是什么?急性低钾血症时,神经肌肉兴奋性降低,其机制为超极化阻滞。细胞外钾急剧减少,而细胞内假没有明显减少,细胞内外钾浓度差增大,根据Nernst方程,细胞的静息电位负值增大,使其与阈电位之间的距离增大,需要增大刺激强度才能引起兴奋,即兴奋性降低。3、高钾血症对神经肌肉有何影响?其机制是什么?高钾血症时神经肌肉的兴奋性可呈双相变化。当细胞
2、外钾浓度增高后,钾离子i/钾离子e比值减少,按Nernst方程静息电位(Em)负值减小。Em与阈电位之间的距离缩小,神经肌肉兴奋性增高。如Em下降到或接近阈电位,可因快钠通道失活而使神经肌肉兴奋性降低,即去极化阻滞。4、试述急性低钾血症对心脏的影响。低钾血症对心肌的影响:心肌兴奋性增高,传导性减低,自律性增高,收缩性增高。5、高钾血症及低钾血症对心脏兴奋性各有何影响?试述其机制。高钾血症时心肌兴奋性先升高后降低,其机制为去极化阻滞,即高钾血症时,细胞内外液中钾离子浓度差变小,按Nernst方程Em负值减小,使其与阈电位的差值减少,故兴奋性增高;但严重高钾血症时,Em接近阈电位时,快钠通道失活反
3、而使心肌兴奋性降低。急性低钾血症时,细胞内外液钾离子浓度差变大,但低钾事心肌细胞膜的钾电导降低,细胞内钾外流减少,Em负值变小,与阈电位之间的距离缩小,故兴奋性增高。6、试述水肿的发生机制。当血管内外液体交换失平衡和/或体内外液体交换失平衡时就可能导致水肿。(1)血管内外液体交换失平衡:毛细血管流体静压增高;血浆胶体渗透压降低;微血管壁通透性增加;淋巴回流受阻。(2)体内外液体交换失平衡:肾小球滤过率下降;肾血流重分布;近曲小管重吸收钠水增多;远曲小管和集合管重吸收钠水增加。7、简述代谢性酸中毒时肾的代偿调节作用。代谢性酸中毒如果不是由于肾脏原因引起,也不是由于血钾升高引起时,肾脏可以通过增强
4、排酸保碱来发挥代偿调节作用,表现为肾小管上皮细胞内碳酸酐酶和谷氨酰胺酶活性增强,泌H+,产NH3增多,重吸收HCO3-也相应增多。从而加速H+的排泄,并使尿液中可滴定酸及NH+4的排出增加,尿液PH降低。肾小管上皮细胞重吸收HCO3-增多,使血浆HCO3-得到补充。8、在哪些情况下容易发生AG增高型代谢性酸中毒?为什么?容易引起AG增大性代谢性酸中毒的原因主要有三类:摄入非氯性酸性药物过多:如水杨酸类药物中毒可使血中有机酸阴离子含量增加,AG增大,HCO3-因中和有机酸而消耗,HCO3-降低。产酸增加:饥饿、糖尿病等因体内脂肪大量分解酮体生成增多;缺氧、休克、心跳呼吸骤停等使有氧氧化障碍,无氧
5、酵解增加乳酸生成增多。酮体和乳酸含量升高都可造成血中有机酸阴离子浓度增加,AG增大,血浆中HCO3-为中和这些酸性物质而大量消耗,引起AG增大性代谢性酸中毒。排酸减少:因肾功能减障碍引起的AG增高型代谢性酸中毒见于严重肾功能衰竭时。此时除肾小管上皮细胞泌H+减少外,肾小球滤过滤率显著降低。机体在代谢过程中生成的磷酸根、硫酸根及其它固定酸根不能经肾排出,血中未测定阴离子增多,AG增大,血浆HCO3- 因肾重吸收减少和消耗增多而含量降低,引起AG增高型代谢性酸中毒。9、试述AG正常型代谢性酸中毒的发生原因及机制。 引起AG正常型代谢性酸中毒的原因和机制如下:(1)消化道直接丢失HCO3-:肠液中的
6、HCO3-浓度高于血浆【HCO3-】,任何原因导致的肠液丢失均可引起HCO3-丢失,因而血浆【HCO3-】降低。(2)轻度或者中度肾功能衰竭,肾小管上皮细胞泌H+及重吸收HCO3-减少。(3)肾小管性酸中毒,由于肾小管上皮细胞的病变,导致近曲小管上皮细胞重吸收HCO3-减少和/或集合管泌H+功能降低,引起血浆HCO3-浓度降低。(4)使用碳酸酐酶抑制剂:碳酸酐酶抑制剂能抑制肾小管上皮细胞内碳酸酐酶的活性,故细胞内H2CO3生成减少,结果使肾小管上皮细胞泌H+和重吸收HCO3-减少。(5)含氯的成酸性药物摄入过多:由于使用过多的含氯的盐类药物,如氯化铵,盐酸精氨酸等,在体内易分解出HCL,HCL
7、消耗血浆中HCO3-而导致AG代谢型酸中毒。10、试述代谢性酸中毒降低心肌收缩力的机制。 代谢性酸中毒引起心肌心肌收缩力减弱的机制可能是:(1)H+浓度增加可竞争性地抑制Ca2+肌钙蛋白钙结合亚单位的结合,使得Ca2和肌钙蛋白结合减少,影响兴奋-收缩偶联。(2)H+浓度增加可以减少Ca2+流;(3)H+浓度增加使得Ca+和肌浆网结合得更加牢固,使得肌浆网释放Ca2+减少,这些都可以造成心肌收缩力降低。11、简述慢性缺氧时红细胞增多的利弊。慢性缺氧时红细胞增多,既可以提高血氧含量和血氧容量,增加携氧能力,有利于氧向组织弥散:但如红细胞增多过多,也可使血液粘滞度增加,血液阻力增大,组织血流量减少,
8、并增加心脏负担和易于血栓形成。12、各种缺氧的血气变化如何?PaO2SaO2CO2maxCaCO2(A-V)Do2低张性缺氧N或或N血液性缺氧NN或N或N循环性缺氧NNNN组织性缺氧NNNN 13、何谓紫绀?与缺氧有何关系?当毛细血管血液内脱氧血红蛋白量平均浓度达到或超过50g/L(5g%),皮肤粘膜呈青紫色,这种现象称为紫绀(发绀),主要见于低张性和循环性缺氧发绀是缺氧的一个临床症状,但有发绀不一定有缺氧,反之,有缺氧者也不一定出现紫绀。例如重度贫血患者,血红蛋白可降至50g/L(5g%)以下,即使全部都成为脱氧血红蛋白(实际上是不可能的),也不会出现发绀,但缺氧却相当严重。又如红细胞增多症
9、患者,血中脱氧血红蛋白超过50g/L(5g%),出现发绀,但可无缺氧症状。因此,不能以发绀作为判断缺氧的唯一指征。 14、各型缺氧皮肤粘膜的颜色有何区别?低张性缺氧时皮肤粘膜呈青紫色,循环性缺氧时皮肤粘膜呈青紫色或苍白(休克的缺血缺氧期时),组织中毒性缺氧时皮肤粘膜呈玫瑰色,血液性缺氧时皮肤粘膜呈樱桃红色(CO中毒)、咖啡色(高铁血红蛋白血症)或苍白(贫血)。15、一氧化碳中毒导致血液性缺氧的发生机制及其主要特点。一氧化碳与血红蛋白的亲和力比氧大210倍,一氧化碳中毒时可形成大量的碳氧血红蛋白而失去携氧能力,同时CO还能抑制红细胞的糖酵解,使2,3DPG合成减少,氧离曲线左移,HbO2的氧不易
10、释出,故可导致缺氧。其主要特点是动脉血氧含量低于正常,动、静脉血氧含量差减小,血氧容量、动脉血氧分压和血氧饱和度均在正常范围内,粘膜、皮肤呈樱桃红色。16、发热激活物的种类。外致热源,包括:细菌(革兰氏阳性菌、革兰氏阴性菌、分枝杆菌)、病毒、真菌、螺旋体、疟原虫等。体内产物,包括:抗原抗体复合物、类固醇等。17、简述血循环中EP传入中枢的途径(1)EP通过血脑屏障转运入脑:在血脑屏障的毛细血管床部位分别存在有IL-1、IL-6、TNF的可饱和转运机制,推测其可将相应的EP特异性地转运入脑。EP也可能从脉络丛部位渗入或者易化扩散入脑,通过脑脊液循环分布到POAH.(2)EP通过终板血管器作用于体
11、温调节中枢。终板血管器紧靠POAH,是血脑屏障的薄弱部位。该处存在有孔毛细血管,对大分子物质有较高的通透性。EP可能由此入脑。EP被分布在此处的相关细胞(巨噬细胞、神经胶质细胞等)膜受体识别结合,产生新的信息(发热介质等),将致热原的信息传入POAH.(3).EP通过迷走神经向体温调节中枢传递发热信号:细胞因子可刺激肝巨噬细胞周围的迷走神经将信息传入中枢。18、试述发热过程的三个时相及各期特点。 体温上升期:体温调定点上移,中枢发出神经信号,机体产热增加。 此期患者的临床表现主要为畏寒、皮肤苍白、“鸡皮”和寒战。体温上升期的热代谢特点是产热增多,散热减少,产热大于散热,体温上升。 高温持续期:
12、当体温上升到与新的调定点水平相适应的高度后,便不再上升,而是波动于该高度附近,称为高温持续期。 此期的热代谢特点是中心体温与上移的调定点水平相适应,产热和散热在高水平上保持相对平衡。 体温下降期:由于发热激活物、EP得到控制和清除,或依靠药物使“调定点”恢复到正常水平后,机体出现明显的散热反应,称为体温下降期(此期的热代谢特点是散热多于产热,体温下降,逐渐达到与调定点相适应的水平。19、试述发热的防治的原则 治疗原发病发热的一般处理:主要针对物质代谢的加强和大量脱水等情况,与补充足够的营养物质、维生素与水。下列情况应及时解热:高热病例,尤其是达到41以上者,避免中枢神经细胞和心脏的严重损害,小
13、儿高热,容易诱发惊厥,更应及早预防。发热时心跳加速,循环加快,增加心脏负担,容易诱发心力衰竭。故对心脏病患者及有潜在的心肌损害者须及早解热。对妊娠早期妇女,发热有致畸胎的危险。妊娠中、晚期妇女,循环血量增多,心脏负担加重,发热会进一步增加心脏负担有诱发心力衰竭的可能性。20、试述全身适应性综合症的分期及各期特点:GAS分为三期,各期的主要变化是1、警觉期:此期在应激作用后迅速出现,为机体保护防御机制的快速动员期。以交感-肾上腺髓质兴奋为主,使机体处于最佳动员状态,。但此期持续时间较短。 2、抵抗期:表现出肾上腺皮质激素分泌增多为主的适应反应,机体表现出适应、抵抗能力的增强。但同时有防御储备能力
14、的消耗,对其它应激原的抵抗力下降。3、衰竭期:持续强烈的有害刺激将消耗机体的抵抗能力,肾上腺皮质激素持续升高,但糖皮质激素受体的数目和亲合力明显下降,机体内环境明显失衡,应激反应的负效应陆续显现,与应激相关的疾病、器官功能的衰退甚至休克、死亡都可在此期出现。21、应激的神经内分泌反应主要包括哪些?:1.应激时蓝斑-交感-肾上腺髓质系统强烈兴奋:该系统的主要中枢效应与应激时的兴奋、警觉有关,并可以引起紧张、焦虑的情绪反应,该系统的外周效应主要表现为血浆中的儿茶酚胺水平增加。引起机体对应激的急性反应如代谢改变与心血管代偿机制。交感神经兴奋主要释放去甲肾上腺素,肾上腺髓质兴奋主要释放肾上腺素。2.
15、应激时下丘脑-垂体-肾上腺皮质激素系统强烈兴奋:通过CRHACTHGC途径导致应激时糖皮质激素分泌增加。CRH也能引起应激时情绪行为反应。糖皮质激素分泌增加是应激时最重要的神经内分泌反应。3.应激时还会出现LC交感肾上腺髓质轴和HPA轴以外的其它内分泌变动如胰高血糖素升高,胰岛素降低等。22、应激性溃疡及其主要发生机制如何?:应激性溃疡:是指病人在遭受各类重伤,重病和其他应激情况下,出现胃、十二指肠粘膜的急性病变,主要表现为糜烂,浅溃疡、渗血等,少数溃疡可较深或穿孔。当溃疡发展侵蚀大血管时,可引起大出血。(1)胃粘膜缺血(2)胃腔内H+向粘膜内的反向弥散(3)其它:酸中毒时血流对粘膜内H+的缓
16、冲能力降低,可促进应激性溃疡的发生。胆汁逆流在胃粘膜缺血的情况下可损害粘膜的屏障功能,使粘膜的通透性升高,H+反向逆流入粘膜增多等。23、简述DIC使休克病情加重的机制休克一旦并发DIC,将使病情恶化,并对微循环和各器官功能产生严重影响:DIC时微血栓阻塞微循环通道,使回心血量锐减;凝血与纤溶过程中的产物,如纤维蛋白原和纤维蛋白降解产物和某些补体成分,增加血管通透性,加重微血管舒缩功能紊乱;DIC造成的出血,导致循环血量进一步减少,加重了循环障碍;器官栓塞梗死,加重了器官急性功能障碍,给治疗造成极大困难24、为什么在休克治疗中必须纠正酸中毒?由于休克时缺氧和缺血,必然导致乳酸血症性酸中毒,根据
17、酸中毒的程度及时补碱纠酸可减轻微循环的紊乱和细胞的损伤,如酸中毒不纠正,由于酸中毒时H+和Ca2+的竞争作用,将直接影响血管活性药物的疗效,也影响心肌收缩力,酸中毒还有导致高钾血症。25、试述感染性休克中高动力型和低动力型发生机制?(1) 低动力型休克:心输出量&总外周阻力 前者机制:内毒素、MDF和岁中毒等使心肌受算力减弱 微循环淤血使回心血量减少后者机制:交感-肾上腺髓质系统兴奋,TXA2,ANG等缩血管物质释放 内皮细胞损伤,促进DIC形成,并使PGI2产出减少(2)高动力型休克:心输出量&总外周阻力前者机制:休克早期心功能尚未受抑制的情况下,由于交感-肾上腺髓质系统兴奋,使心率加快,心
18、肌收缩力加强 因外周阻力而回心血量后者机制:感染性中一些扩血管物质的释放,如组胺、PGI2、NE、内啡肽等 儿茶酚胺作用于受体使动静脉短路开放26、简述过敏性休克的发生机制属1型变态反应,其机制与lgE及抗原在肥大细胞表面结合,引起组胺,缓激肽和慢反应物质等大量入学造成血管床容积变大,毛细血管通透性增加有关27、低排低阻型心源性休克的发生机制由于心肌梗死面积大,心输出量显著减少,心室内瘀滞的血液使心室壁牵张感受器受到刺激,反射性地抑制交感中枢,使外周阻力降低28、动脉血压高低是否可作为判断休克发生与否的指标?为什么?休克的本质是微循环灌流量的急剧减少而引起的微循环障碍、重要脏器的灌流不足和细胞
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 病理 生理学 答题 复习题
限制150内