通信原理实验指导书完整.doc
《通信原理实验指导书完整.doc》由会员分享,可在线阅读,更多相关《通信原理实验指导书完整.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实验一:抽样定理实验一、实验目的1、熟悉TKCSAS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习?通信系统原理?中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进展调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多
2、路系统中那么是利用不同时序的脉冲对基带信号进展抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保存了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论根底的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语
3、音信号进展抽样,然后才能进展量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。图1-1单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为fH(即m(t)的频谱中没有fH以上的分量),可以唯一地由频率等于或大于2fH的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音
4、信号m(t)的频谱如图1-2和图1-3所示。由频谱可知,用截止频率为fH的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs2fH,就会出现频谱混迭的现象,如图1-5所示。在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。图1-2语音信号的频谱 图1-3语音信号的抽
5、样频谱和抽样信号的频谱图1-4留出防卫带的语音信号的抽样频谱 图1-5 fs|UP|,那么场效应晶体管处于夹断状态,输出信号为“0。抽样脉冲来时,驱动三极管导通,发射极+5V电压加到驱动二极管,使之反向偏置。从截止到导通的跳变电压经跨接在二极管两端的电容加到场效应晶体管的G极。使栅极、源极之间的电压迅速到达场效应晶体管导通的数值,并一直到达使源极电压等于漏极上的模拟电压。这样,抽样脉冲期间模拟电压经场效应晶体管开关加到负载上。由于抽样电路的负载是一个电阻,因此抽样的输出端能得到一串脉冲信号。此脉冲信号的幅度与抽样时输入信号的瞬时值成正比例,脉冲的宽度与抽样脉冲的宽度一样。这样,脉冲信号就是脉冲
6、调幅信号。当抽样脉冲宽度远小于抽样周期时,电路输出的结果接近于理想抽样序列。由图l6可知,用一低通滤波器即可实现模拟信号的恢复。为便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400Hz。四、实验仪器双踪同步示波器五、实验内容与步骤一、准备工作1、观察本实验电路局部及所需直流电压;2、翻开交流电源总开关,用短线接上直流电压;一、抽样脉冲和分路脉冲的形成用示波器观察各脉冲信号,记录信号的波形、频率、幅度及脉冲宽度;1、了解TKCS-AS型通信系统原理实验装置的构造;2、用示波器观察主振脉冲TP1信号;幅度: V周期: s频率: Hz主振脉冲TP13、用示波器观察分路抽
7、样脉冲TP2和TP3信号;幅度: V周期: s频率: Hz分路抽样脉冲TP2和TP34、用示波器观察分路抽样脉冲TP2和TP3信号;幅度: V周期: s频率: Hz分路抽样脉冲TP2和TP35、比拟TP2TP2、TP3TP3的相位;比拟结果:二、验证抽样定理1、翻开低频函数发生器电源,用示波器观察输出端,调节频率和幅度电位器,输出正弦波f = 1KHz、Vp-p = 2V;2、正弦波信号从信号输入端TP4输入;3、连接TP2TP6;4、以TP4作比拟信号,观察抽样后形成的PAM信号TP8,调整示波器触发同步,使波形在示波器上稳定,计算一个周期内的抽样次数,核对信号频率与抽样频率的关系;幅度:
8、V周期: s频率: Hz抽样后形成的PAM信号TP85、改变信号频率f ;计算一个周期内的抽样次数,填入下表:fHz3005001000200030005000抽样次数6、连接TP2TP6;TP8TP14在TP15观察经低通滤波器和放大器的解调信号,测量其频率确定和输入信号的关系,验证抽样定理。幅度: V周期: s频率: Hz解调信号TP15六、实验报告1、整理实验数据,画出相应的曲线和波形。2、抽样定理的内容和公式?3、实验心得与体会。实验二:脉冲调幅PAM实验一、实验目的1、观察了解PAM信号的形成过程;2、了解PAM的平顶展宽解调过程;3、低通滤波器在解调中的作用;二、实验预习要求1、复
9、习?通信系统原理?中有关PAM的内容;2、复习模拟通信系统和基带传输的有关章节;3、阅读本实验的内容,熟悉实验的步骤;三、实验原理1、多路脉冲调幅(PAM信号的形成和解调)多路脉冲调幅的实验框图如图27所示。在实验中,连接TP8和(TP11)、TP13和TP14就构成了多路脉冲调幅实验电路。图2-7多路脉冲调幅实验框图分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。n路抽样脉冲在时间上是互不穿插、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。多路脉冲调幅信号进入接收端后,由分路选通脉冲别离成n路
10、,亦即复原出单路PAM信号。发送端分路抽样与接收端分路选通是一一对应的,这是依靠它们所使用的定时脉冲的对应关系决定的。为简化实验系统,本实验的分路选通脉冲直接利用该路的分路抽样脉冲经适当延迟获得。接收端的选通电路也采用结型场效应晶体管作为开关元件,但输出负载不是电阻而是电容。采用这种类似于平顶抽样的电路是为了解决PAM解调信号的幅度问题。由于时分多路的需要,分路脉冲的宽度是很窄的。当占空比为s / T s的脉冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后参加保持电容,可使分路后的PAM信号展宽到100的占空比,从而解决信号幅度衰减过大的
11、问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但在幅度上却是连续的。而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 2、多路脉冲调幅系统中的路际串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中的各路通话之间的串话。串话分可懂串话和不可懂串话,前者造成失密或影响正常通话:后者等于噪声干扰。对路际串话必须设法防止。一个实用的通话系统必须满足对路际串话规定的指标。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本
12、路时隙中的矩形脉冲。但如果传输PAM信号的通道频带是有限的,那么PAM信号就会出现“拖尾的现象,当“拖尾严重,以至侵入邻路隙时,就产生了路际串话。在考虑通道频带高频端时,可将整个通道简化为图2-8所示的低通网络,它的上截止频率为:f1=1(2R1C1)图2-8通道的低通等效网络为了分析方便,设第一路有幅度为V的PAM脉冲,而其它路没有。当矩形脉冲通过图2-8(a)所示的低通网络,输出波形如图2-8(b)所示。脉冲终了时,波形按R1C1时间常数指数下降。这样,就有了第一路脉冲在第二路时隙上的残存电压串话电压U,这种由于信道的高频响应不够引起的路际串话就叫做高频串话。 当考虑通道频带的低频端时,可
13、将通道简化为图2-9所示的高通网络。它的下截止频率为:f2=1(2R2C2) 由于R2C2 所以当脉冲通过图2-9(a)所示的高通网络后,输出波形如图2-9(b)所示。长长的“拖尾影响到相隔很远的时隙。假设计算某一话路上的串话电压,那么需要计算前n路对这一路分别产生的串话电压,积累起来才是总的串话电压。这种由于信道的低频响应不够而引起的路际串话就叫做低频串话。解决低频串话是一项很困难的工作。图2-9通道的高频等效电路四、实验仪器双踪同步示波器五、实验内容与步骤1、翻开低频函数发生器电源,用示波器观察输出端,调节频率和幅度电位器,输出正弦波f = 1KHz、Vp-p = 2V;2、正弦波信号从信
14、号输入端TP4输入;3、连接TP2TP6、TP8TP11、TP13TP14、TP3TP12;4、在TP13观察选通后的单路解调展宽信号,用示波器读出的宽度单位为us; = us;单路解调展宽信号TP135、改变信号频率f ,在TP15观察经低通滤波器放大后的音频信号,测量整个系统的频率特性幅度: V周期: s频率: Hz单路解调展宽信号TP13测量整个系统的频率特性,测试数据填入下表:fHz3005001000200030005000TP15Vp-p六、实验报告1、整理实验数据,画出相应的曲线和波形;2、答复:PAM信号是怎样形成的?3、实验心得与体会。实验三:脉冲编码调制PCM实验一、实验目
15、的1、了解语音信号编译码的工作原理;2、验证PCM编码原理;3、初步了解PCM专用集成电路的工作原理和应用;4、了解语音信号数字化技术的主要指标及测试方法;二、实验预习要求1、复习?通信系统原理?中有关编译码和PCM通信系统的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理1、 概述图3-1PCM数字 终端机的构造示意图脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。十多年来,由于超大规模集成技术的开展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改良。目前,数字 终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化
16、。本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。PCM数字 终端机的构成原理如图3-1所示。实验只包括虚线框内的局部,故名PCM编译码实验。2、实验原理和电路PCM编译码系统由定时局部和PCM编译码器构成。一、PCM编译码原理为适应语音信号的动态范围,实用的PCM编译码必须是非线性的。目前,国际上采用的均是折线近似的对数压扩特性。CCITT。的建议规定以13段折线近似的A律(A=87.56)和15段折线近似的律(=255)作为国际标准。A律和u律的量化特性初始段如图3-2(a)和图3-2(b)所示。图3-2量化特性 这种折线近似压
17、扩特性的特点是:各段落间量阶关系都是2的倍数,在段落内为均匀分层量化,即等间隔16个分层。这些对于用数字电路实现非线性编码与译码是极为方便的。 二、PCM编译码器简介本实验PCM编译码器采用了TP3067专用大规模集成电路,它是CMOS工艺制造的单片PCM A律编译码器,并且片内带有输入输出话路滤波器。TP3067的管脚如图3-3所示。TP3067的管脚定义简述如下:(1)VPO+ 接收功放的同向输出。(2)GNDA模拟地。所有信号以这个引脚为参考点。(3)VPO- 接收功放的反向输出。(4)VPI 将输入转换到接收功放。(5)VFRO接收滤波器的模拟输出。图3-3TP3067的管脚图(6)V
18、CC 正电源引脚。VCC:+5V5(7)FSR 接收局部的8KHz帧同步时隙信号。(8)DR PCM码流解码输入。(9)BCLKR/CLKSET 接收数据(DR)时钟,在固定速率工作模式下为2048K。FSR的上升沿,可以从64KHz变化到2.048MHz。逻辑输入可以交替地选择在同步模式下提供应主时钟的1.536MHzl.554MHz或2.048MHz,BCLKX用于传输和接收。(10)MCLKRPDN 接收主时钟。1.544MHz或2.048MHz。可以与MCLK同步,但最好是在最正确性能时与MCLKX同步。在MCLKR持续低时,全部内部定时选择MCLKX。在MCLKR持续高时,器件处于低
19、功耗状态。(11)MCLKX 传输主时钟必须是1.536MHz,1.544MHz或2.048MHz可以与MCLKR同步。(12)BCLKX 传输数据(DX)位时钟,固定速率工作模式下为2048K可以从64KHz变化到2.048MHz,但必须与MCLKX同步。(13)DX 编码数据输出,通过FSX使能。(14)FSX 发送局部的8KHz帧同步时隙信号,(15)TSX 编码时的消耗输出(16)ANLB 控制输入的模拟回路。操作时必须置逻辑“0。(17)GSX 传输输入放大器的模拟输出,用于内部设置增益。(18)VFXI- 传输输入放大器的反向输入。(19)VFXI+ 传输输入放大器的同向输入。(2
20、0)VBB 负电源引脚。VBB=-5V5。三、定时局部TP3067编译码器所需的定时脉冲均由定时局部提供。这里只需要主时钟2048KHz和帧定时8KHz信号。为了简化实验内容,本实验系统的编译码局部公用一个定时源以确保发收时隙的同步。在实际的PCM数字 设备中,确有一个同步系统来保证发收同步的。四、实验仪器双踪同步示波器五、实验内容与步骤TP1:幅度: V周期: s频率: Hz1、用示波器在TP1观察主振波形、在TP2、TP3和TP4观察波形,记录它们的频率和幅度;并比拟TP3和TP4的相位,在同一坐标系中画出其波形;TP2:幅度: V周期: s频率: HzTP1和TP2TP3:幅度: V周期
21、: s频率: Hz2、翻开低频函数发生器电源,用示波器观察输出端,调节频率和幅度电位器,输出正弦波f = 1KHz、Vp-p = 2V;TP4:幅度: V周期: s频率: HzTP3和TP43、正弦波信号从信号输入端TP5输入;4、观察TP6PCM编码输出的码流,画出其波形;5、连接TP6TP7观察经译码和接收低通滤波器恢复出的同相输出音频信号TP8和反相输出的音频信号TP8,记录各点的波形频率和幅度;幅度: V周期: s频率: HzPCM编码输出TP66、测试系统的频率特性:改变信号频率f ,在TP8观察经低通滤波器后的音频信号,测量整个系统的频率特性;幅度: V周期: s频率: Hz译码输
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通信 原理 实验 指导书 完整
限制150内