高中数学巧学巧解大全.doc
《高中数学巧学巧解大全.doc》由会员分享,可在线阅读,更多相关《高中数学巧学巧解大全.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学活题巧解方法 一、代入法1二、直接法2三、定义法3四、向量坐标法4五、查字典法5六、挡板模型法6七、等差中项法7八、逆向化法7九、极限化法8十、整体化法9十一、参数法10十二、交轨法11十三、几何法13十四、弦中点轨迹法14十五、比较法15十六、基本不等式法17十七、综合法18十八、分析法18十九、放缩法19二十、反证法21二十一、换元法22第十一章 不等式24高中数学活题巧解方法一、代入法若动点依赖于另一动点而运动,而点的轨迹方程已知(也可能易于求得)且可建立关系式,于是将这个点的坐标表达式代入已知(或求得)曲线的方程,化简后即得点的轨迹方程,这种方法称为代入法,又称转移法或相关点法
2、。【例1】(2009年高考广东卷)已知曲线:与直线:交于两点和,且,记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点是L上的任一点,且点P与点A和点B均不重合.若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;【巧解】联立与得,则中点,设线段 的中点坐标为,则,即,又点在曲线上,化简可得,又点是上的任一点,且不与点和点重合,则,即,中点的轨迹方程为().【例2】(2008年,江西卷)设 在直线上,过点作双曲线的两条切线、,切点为、,定点M。 过点A作直线的垂线,垂足为N,试求的重心G所在的曲线方程。【巧解】设,由已知得到,且,(1)垂线的方程为:,由得垂足,
3、设重心所以 解得 由 可得 即为重心所在曲线方程巧练一:(2005年,江西卷)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.,求APB的重心G的轨迹方程.巧练二:(2006年,全国I卷)在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量,求点M的轨迹方程二、直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法。从近几年全国各地的
4、高考数学试题来看,绝大大部分选择题的解答用的是此法。但解题时也要“盯住选项特点”灵活做题,一边计算,一边对选项进行分析、验证,或在选项中取值带入题设计算,验证、筛选而迅速确定答案。【例1】(2009年高考全国II卷)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点。若,则C的离心率为( )(A)(B)(C)(D)【巧解】设,由,得,设过点斜率为的直线方程为,由消去得:, , 将 代入得化简得 ,化简得:,即。故本题选(A)【例2】(2008年,四川卷)设定义在上的函数满足,若,则( )(A)13(B)2(C)(D)【巧解】,函数为周期函数,且,故选(C)巧练一:(2008年,湖北卷)
5、若上是减函数,则b的取值范围是( )ABCD巧练二:(2008年,湖南卷)长方体ABCDA1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=AA1=1,则顶点A、B间的球面距离是( )ABCD 三、定义法所谓定义法,就是直接用数学定义解题。选择题的命题侧重于对圆锥曲线径、准线、离心定义的考查,凡题目中涉及焦半径、通率及离心率的取值范围等问题,用圆锥曲线的第一和第二定义解题,是一种重要的解题策略。【例1】(2009年高考福建卷,理13)过抛物线的焦点F作倾斜角为450的直线交抛物线于A、B两点,线段AB的长为8,则 【巧解】依题意直线的方程为,由消去得:,设,根据抛物线的定义。,故本题应
6、填2。【例2】(2008年,山东卷,理10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26. 若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( )(A)(B)(C)(D)【巧解】由题意椭圆的半焦距为,双曲线上的点满足点的轨迹是双曲线,其中,故双曲线方程为,选(A)巧练一:(2008年,陕西卷)双曲线的左、右焦点分别是F1,F2,过F1作倾斜角为30的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为( )ABCD巧练二:(2008年,辽宁卷)已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )(
7、A)(B)3(C)(D)四、向量坐标法向量坐标法是一种重要的数学思想方法,通过坐标化,把长度之间的关系转化成坐标之间的关系,使问题易于解决,并从一定程度上揭示了问题的数学本质。在解题实践中若能做到多用、巧用和活用,则可源源不断地开发出自己的解题智慧,必能收到事半功倍的效果。【例1】(2008年,广东卷)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F. 若=a,=b,则=( )AxyOBDCEAa +b Ba +b Ca +b Da +b【巧解】如图所示,选取边长为2的正方形则,直线的方程为,联立得,设,则解之得,故本题选B【例2】已知点为内一点,且0
8、,则、的面积之比等于( )A9:4:1 B1:4:9 C3:2:1D1:2:3ABCxyO【巧解】不妨设为等腰三角形,建立如图所示的直角坐标系,则点,设,0,即解之得,即,又直线的方程为,则点到直线的距离,因此,故选C巧练一:(2008年,湖南卷)设D、E、F分别是ABC的三边BC、CA、AB上的点,且( )A反向平行B同向平行C互相垂直D既不平行也不垂直巧练二:设是内部一点,且,则与面积之比是 .五、查字典法查字典是大家比较熟悉的,我们用类似“查字典”的方法来解决数字排列问题中数字比较大小的问题,避免了用分类讨论法时容易犯的重复和遗漏的错误,给人以“神来之法”的味道。利用“查字典法”解决数字
9、比较大小的排列问题的思路是“按位逐步讨论法”(从最高位到个位),查首位时只考虑首位应满足题目条件的情况;查前“2”位时只考虑前“”位中第“2”个数应满足条件的情况;依次逐步讨论,但解题中既要注意数字不能重复,又要有充分的理论准备,如奇、偶问题,3的倍数和5的倍数的特征,0的特性等等。以免考虑不全而出错。【例1】(2007年,四川卷)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A)288个(B)240个(C)144个(D)126个【巧解】本题只需查首位,可分3种情况, 个位为0,即 型,首位是2,3,4,5中的任一个,此时个数为; 个位为2,即, 此
10、种情况考虑到万位上不为0,则万位上只能排3,4,5,所以个数为;个位为4, 型,此种特点考虑到万位上不为0,则万位上只能排2,3,5,所以个数为;故共有个。故选(B)【例2】(2004年全国II卷)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A56个B57个C58个D60个【巧解】(1)查首位:只考虑首位大于2小于4的数,仅有1种情况:即型,此特点只需其它数进行全排列即可。有种,(2)查前位:只考虑前“”位中比既大又小的数,有4种情况:,型,而每种情况均有种满足条件,故共有种。(3)查前位:只考虑前“3”位中既比大又小于5的数,有4种
11、情况:,型,而每种情况均有种满足条件,故共有种。(3)查前4位:只考虑前“4”位中既比4大又小于2的数,此种情况只有 23154和43512两种情况满足条件。故共有个,故选C 巧练一:用数字可以组成没有重复数字,并且不大于4310的四位偶数共有( )A110种B109种C108种D107种巧练二:(2007年,四川卷)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A)48个(B)36个(C)24个(D)18个六、挡板模型法挡板模型法是在解决排列组合应用问题中,对一些不易理解且复杂的排列组合问题,当元素相同时,可以通过设计一个挡板模型巧妙解决,否则,如果分
12、类讨论,往往费时费力,同时也难以解决问题。【例1】体育老师把9个相同的足球放入编号为1,2,3的三个箱中,要求每个箱子放球的个数不少于其编号,则不同的放球方法有( )A8种B10种C12种D16种【巧解】先在2号盒子里放1个小球,在3号盒子里放2个小球,余下的6个小球排成一排为:,只需在6个小球的5个空位之间插入2块挡板,如:,每一种插法对应着一种放法,故共有不同的放法为种. 故选B【例2】两个实数集,若从A到B的映射使得B中每个元素都有原象,且,则这样的映射共有( )个ABCD【巧解】不妨设两个集合中的数都是从小到大排列,将集合的50个数视为50个相同的小球排成一排为:,然后在50个小球的4
13、9个空位中插入24块木板,每一种插法对应着一种满足条件对应方法,故共有不同映射共有种. 故选B巧练一:两个实数集合A=a1, a2, a3, a15与B=b1, b2, b3, b10,若从A到B的是映射f使B中的每一个元素都有原象,且f(a1)f(a2) f(a10)f(a11)f(a15), 则这样的映射共有( )A个B个C1015个D巧练二:10个完全相同的小球放在标有1、2、3、4号的四个不同盒子里,使每个盒子都不空的放法有( )种A24B84C120D96七、等差中项法等差中项法是根据题目的题设条件(或隐含)的特征,联想到等差数列中的等差中项,构造等差中项,从而可使问题得到快速解决,
14、从而使解题过程变得简捷流畅,令人赏心悦目。【例1】(2008年,浙江卷)已知,则( )(A)(B)(C)(D)【巧解】根据特征,可得成等差数列,为与的等差中项。可设,其中;则,又,故,由选项知应选(C)【例2】(2008年,重庆卷)已知函数的最大值为M,最小值为m,则的值为( )(A)(B)(C)(D)【巧解】由可得,为与的等差中项,令,其中,则,即,又,则,故,解之得,即,故选(C)巧练:(2008年,江苏卷)的最小值 .八、逆向化法逆向化法是在解选择题时, 四个选项以及四个选项中只有一个是符合题目要求的都是解题重要的信息。 逆向化策略是把四个选项作为首先考虑的信息,解题时,要“盯住选项”,
15、着重通过对选项的分析,考查,验证,推断进行否定或肯定,或者根据选项之间的关系进行逻辑分析和筛选,找到所要选择的,符合题目要求的选项。【例1】(2008年,湖北卷)函数的定义域为( )ABC D【巧解】观察四个选项取端点值代入计算即可,取,出现函数的真数为0,不满足,排含有1的答案C,取代入计算解析式有意义,排不含有的答案B,取出现二次根式被开方数为负,不满足,排含有2的答案A,故选D评析:求函数的定义域只需使函数解析式有意义,凡是考查具体函数的定义域问题都可用特值法代入验证快速确定选项。【例2】(2008年,江西卷)已知函数,若对于任一实数与的值至少有一个为正数,则实数的取值范围是( )A(0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 巧学巧解 大全
限制150内