高中数学导数的应用——极值与最值专项训练题(全).doc
《高中数学导数的应用——极值与最值专项训练题(全).doc》由会员分享,可在线阅读,更多相关《高中数学导数的应用——极值与最值专项训练题(全).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学专题训练导数的应用极值与最值一、选择题1函数yax3bx2取得极大值和极小值时的x的值分别为0和,则()Aa2b0B2ab0C2ab0 Da2b0答案D解析y3ax22bx,据题意,0、是方程3ax22bx0的两根,a2b0.2当函数yx2x取极小值时,x()A. BCln2 Dln2答案B解析由yx2x得y2xx2xln2令y0得2x(1xln2)02x0,x3函数f(x)x33bx3b在(0,1)内有极小值,则()A0b1 Bb1Cb0 Db答案A解析f(x)在(0,1)内有极小值,则f(x)3x23b在(0,1)上先负后正,f(0)3b0,b0,f(1)33b0,b1综上,b的范
2、围为0b14连续函数f(x)的导函数为f(x),若(x1)f(x)0,则下列结论中正确的是()Ax1一定是函数f(x)的极大值点Bx1一定是函数f(x)的极小值点Cx1不是函数f(x)的极值点Dx1不一定是函数f(x)的极值点答案B解析x1时,f(x)0x1时,f(x)0连续函数f(x)在(,1)单减,在(1,)单增,x1为极小值点5函数yx23x4在0,2上的最小值是()ABC4 D答案A解析yx22x3.令yx22x30,x3或x1为极值点当x0,1时,y0,所以当x1时,函数取得极小值,也为最小值当x1时,ymin.6函数f(x)的导函数f(x)的图象,如右图所示,则()Ax1是最小值点
3、Bx0是极小值点Cx2是极小值点D函数f(x)在(1,2)上单增答案C解析由导数图象可知,x0,x2为两极值点,x0为极大值点,x2为极小值点,选C.7已知函数f(x)x3x2x,则f(a2)与f(1)的大小关系为()Af(a2)f(1)Bf(a2)f(1)Cf(a2)f(1)Df(a2)与f(1)的大小关系不确定答案A解析由题意可得f(x)x22x.由f(x)(3x7)(x1)0,得x1或x.当x1时,f(x)为增函数;当1x时,f(x)0;当x0.x时取极大值,f().二、填空题9若yalnxbx2x在x1和x2处有极值,则a_,b_.答案解析y2bx1.由已知,解得10已知函数f(x)x
4、3bx2c(b,c为常数)当x2时,函数f(x)取得极值,若函数f(x)只有三个零点,则实数c的取值范围为_答案0c解析f(x)x3bx2c,f(x)x22bx,x2时,f(x)取得极值,222b20,解得b1.当x(0,2)时,f(x)单调递减,当x(,0) 或x(2,)时,f(x)单调递增若f(x)0有3个实根,则,解得0c11设mR,若函数yex2mx(xR)有大于零的极值点,则m的取值范围是_答案m1,即m0,所以不存在实数a,使得f(x)是(,)上的单调函数15已知定义在R上的函数f(x)x2(ax3),其中a为常数(1)若x1是函数f(x)的一个极值点,求a的值;(2)若函数f(x
5、)在区间(1,0)上是增函数,求a的取值范围解析(1)f(x)ax33x2,f(x)3ax26x3x(ax2)x1是f(x)的一个极值点,f(1)0,a2.(2)解法一当a0时,f(x)3x2在区间(1,0)上是增函数,a0符合题意;当a0时,f(x)3ax(x),令f(x)0得:x10,x2.当a0时,对任意x(1,0),f(x)0,a0符合题意;当a0,1,2a0符合题意;综上所述,a2.解法二f(x)3ax26x0在区间(1,0)上恒成立,3ax60,a在区间(1,0)上恒成立,又2,a2.16已知函数f(x)x2ax1lnx.(1)若f(x)在(0,)上是减函数,求a的取值范围;(2)
6、函数f(x)是否既有极大值又有极小值?若存在,求出a的取值范围;若不存在,请说明理由解析(1)f(x)2xa,f(x)在(0,)上为减函数,x(0,)时2xa0恒成立,即a4,g(x)g()3,a3.(2)若f(x)既有极大值又有极小值,则f(x)0必须有两个不等的正实数根x1,x2,即2x2ax10有两个不等的正实数根故a应满足a2,当a2时,f(x)0有两个不等的实数根,不妨设x1x2,由f(x)(2x2ax1)(xx1)(xx2)知,0xx1时f(x)0,x1x0,xx2时f(x)2时f(x)既有极大值f(x2)又有极小值f(x1)1. 已知yf(x)是奇函数,当x(0,2)时,f(x)
7、lnxax(a),当x(2,0)时,f(x)的最小值为 1,则a的值等于_答案1解析f(x)是奇函数,f(x)在(0,2)上的最大值为1,当x(0,2)时,f(x)a,令f(x)0得x,又a,00,则x,f(x)在(0,)上递增;令f(x),f(x)在(,2)上递减,f(x)maxf()lna1,ln0,得a1.2设函数f(x)2x33ax23bx8c在x1及x2时取得极值(1)求a、b的值;(2)若对任意的x0,3,都有f(x)0;当x(1,2)时,f(x)0.所以,当x1时,f(x)取得极大值f(1)58c.又f(0)8c,f(3)98c,则当x0,3时,f(x)的最大值为f(3)98c.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 导数 应用 极值 专项 训练
限制150内