概率论与数理统计期末试卷及答案(最新6).doc
《概率论与数理统计期末试卷及答案(最新6).doc》由会员分享,可在线阅读,更多相关《概率论与数理统计期末试卷及答案(最新6).doc(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、华南理工大学期末试卷概率论与数理统计试卷A卷注意事项:1.考前请将密封线内各项信息填写清楚;2.解答就答在试卷上;3.考试形式:闭卷;4.本试卷共八大题,满分100分,考试时间120分钟。题号一二三四五六七八总分得分评卷人注:标准正态分布的分布函数值(2.33)=0.9901;(2.48)=0.9934;(1.67)=0.9525一、 选择题(每题3分,共18分) 1.设A、B均为非零概率事件,且AB成立,则 ( )A. P(AB)=P(A)+P(B) B. P(AB)=P(A)P(B)C. P(AB)= D. P(A-B)=P(A)-P(B)2. 掷三枚均匀硬币,若A=两个正面,一个反面,则
2、有P(A)= ( )A.1/2 B.1/4 C.3/8 D.1/83. 对于任意两个随机变量和,若E()=EE,则有 ( )A. D()=DD B. D(+)=D+DC. 和独立 D. 和不独立4. 设P(x)=。若P(x)是某随机变量的密度函数,则常数A= ( )A.1/2 B.1/3 C.1 D.3/25. 若1,2,6相互独立,分布都服从N(u, ),则Z=的密度函数最可能是 ( )A. f(z)= B. f(z)=C. f(z)= D. f(z)= 6.设(,)服从二维正态分布,则下列说法中错误的是 ( )A.(,)的边际分布仍然是正态分布B.由(,)的边际分布可完全确定(,)的联合分
3、布C. (,)为二维连续性随机变量D. 与相互独立的充要条件为与的相关系数为0二、填空题(每空3分,共27分)1. 设随机变量X服从普阿松分布,且P(X=3)= ,则EX= 。2. 已知DX=25 , DY=36 , =0.4 , 则cov (X,Y)= _.3. 设离散型随机变量X分布率为PX=k=5A (k=1,2,),则A= .4. 设表示10次独立重复试验中命中目标的次数,每次射中目标的概率为0.6,则的数学期望E()= .5. 设随机变量的分布函数F(x)= (0),则的密度函数p(x)=_ ,E= , D= .6. 设XN(2, ),且P2X4=0.3,则PX0= 7. 袋中有50
4、个乒乓球,其中20个黄的,30个白的。现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是 。三、(本题8分)在房间里有10个人,分别佩戴从1到10号的纪念章,任选3人纪录其纪念章的号码,试求下列事件的概率:(1)A=“最小号码为6”; (2)B=“不含号码4或6”。四、(本题12分)设二维随机变量(,)具有密度函数试求(1)常数C; (2)P(+1); (3) 与是否相互独立?为什么? (4)和的数学期望、方差、协方差。五、(本题8分)已知产品中96%为合格品。现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05.求在这种简化
5、检查下被认为是合格品的一个产品确实是合格品的概率?六、(本题8分)一个复杂的系统由100个相互独立起作用的部件所组成。在运行期间,每个部件损坏的概率为0.1,而为了使整个系统正常工作,至少必须有85个部件工作。求整个系统正常工作的概率。七、(本题12分)有一类特定人群的出事率为0.0003,出事赔偿每人30万元,预计有500万以上这样的人投保。若每人收费M元(以整拾元为单位,以便于收费管理。如122元就取为130元、427元取成430元等),其中需要支付保险公司的成本及税费,占收费的40%,问M至少要多少时才能以不低于99%的概率保证保险公司在此项保险中获得60万元以上的利润?八、(本题7分)
6、叙述大数定理,并证明下列随机变量序列服从大数定理。 ,n=2,3,42005级概率论与数理统计试卷A卷参考答案一、1.C注释:由“AB成立”得P(A)=P(AB)2.C3.B注释:参考课本86页4.B?5.6.BA项参见课本64页,D项参见课本86页二、1.2注释:若X服从Poisson分布,则EX=,DX=。(课本84页)2.12注释:cov(X,Y)= r。(参考课本86页)3.1/5注释:运用等比求和公式S=4.38.4注释:5p(x)=,6.0.2注释:类似2006级试卷填空题第6题7.2/5三、(1)1/20; (2)14/15注释:(1)P(A)=;(2)四、(1)C=4;(2)(
7、3) ?(4)五、0.9979注释:运用全概率公式,类似2006级试卷第三题六、0.9525七、M=160八、(1)课本98页辛欣大数定理(2)姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试概率论与数理统计试卷A卷(2学分用)注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3考试形式:闭卷; 4. 本试卷共 八 大题,满分100分。考试时间120分钟。题 号一二三四五六七八总分得 分评卷人注:标准正态分布的分布函数值一、 选择题 (每题3分,共15分)1、设X
8、N(,2),则概率P(X1)=( ) A) 随的增大而增大 ; B) 随的增加而减小;C) 随的增加而增加; D) 随的增加而减小2、设A、B是任意两事件,则 A) B) C) D)3、设x是一个连续型变量,其概率密度为j(x),分布函数为F(x),则对于任意x值有( ) A)P(x=x) = 0 B)F(x) = j(x) C)P(x = x) = j(x) D)P(x = x) = F(x)4、对于任意两个随机变量和,若,则( )A) B)C)和独立 D)和不独立5、设的分布律为012p0.250.350.4而,则( ) A)0.6, B)0.35, C)0.25, D)0二、填空题 (每
9、空3分,共21分)1、某射手有5发子弹,射一次命中的概率为0.75。如果命中了就停止射击,否则就一直射到子弹用尽。则耗用子弹数x的数学期望为 。2、已知DY=36,cov(X,Y)=12,相关系数rXY=0.4,则DX= 。 3、三次独立的试验中,成功的概率相同,已知至少成功一次的概率为,则每次试验成功的概率为 。4、设,且X、Y相互独立,则服从二项分布 。5、若,方程有实根的概率 。6、设,且P2X4=0.15,则PX0= _7、相关系数是两个随机变量之间 程度的一种度量。 三、(10分)设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次
10、为0.1,0.2,0.3,从这10箱中任取一箱,再从这箱中任取一件,求这件产品为正品的概率。若取出的产品为正品,它是甲厂生产的概率是多少? 四、(8分)离散型随机变量的分布函数,求的分布列及X的数学期望。五、(15分)设随机变量的概率密度函数为:求:(1)的概率分布函数,(2)落在(-5,10)内的概率;(3)求X的方差。六、(10分) 设由2000台同类机床各自独立加工一件产品,每台机床生产的次品率均服从(0.005,0.035)上的均匀分布。问这批产品的平均次品率小于0.025的概率是多少?七、(15分) 设二维随机变量(X,Y)在区域:上服从均匀分布。(1)求(X,Y)的联合概率密度及边
11、缘概率密度;(2)已知,求参数a、b;(3)判断随机变量X与Y是否相互独立?八、(6分)设随机变量X服从(0,1)上均匀分布,Y服从参数为l=5的指数分布,且X,Y独立。求Z=minX,Y的分布函数与密度函数。2006级概率论与数理统计试卷A卷参考答案一、1.D=2.C注释:参考课本第8页3.A注释:连续型随机变量在某一个点上的概率取值为零,故A正确?B项是否正确4.B注释:参考课本86页5.A二、1. 1.33(或者填)225注释:参考课本86页3.0.254.(X+Y)B(7,p)注释:E(X)=3p,E(Y)=4p,故E(X+Y)=E(X)+E(Y)=3p+4p=7p;D(X)=3p(1
12、-p),D(Y)=4p(1-p)且X、Y独立,故D(X+Y)=D(X)+D(Y)= 3p(1-p)+ 4p(1-p)设(X+Y)B(n,P),则有解得n=7,P=p5.2/56.0.35?7.相关三、四、五、?六、?试卷中没有给出的值,且直观上感觉的值太大了,故不能肯定题中的做法是否可行七、八、姓名 学号 学院 专业 座位号 ( 密 封 线 内 不 答 题 )密封线线_ _ 诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试概率论与数理统计试卷A卷(2学分用)注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3考试形式:闭卷; 4. 本试卷共 十
13、 大题,满分100分。考试时间120分钟。题 号一二三四五六七八九十总分得 分评卷人注:标准正态分布的分布函数值一、(10分)假设一枚弹道导弹击沉航空母舰的概率为,击伤的概率为,击不中的概率为,并设击伤两次也会导致航空母舰沉没,求发射4枚弹道导弹能击沉航空母舰的概率?二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J、Q、K、A),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。三、(10
14、分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。假设过关人中有96%是非危险人物。问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量服从,求的密度函数五、(12分)设随机变量X、Y的联合分布律为:XY-1012-2a000-10.14b0000.010.020.03010.120.130.140.15已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。六、(10分)某学校北区食
15、堂为提高服务质量,要先对就餐率p进行调查。 决定在某天中午,随机地对用过午餐的同学进行抽样调查。设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大? 七、(10分) 设二维随机变量(X,Y)在区域:上服从均匀分布。(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知,求参数a、b;(3)判断随机变量X与Y是否相互独立?八、(8分)证明:如果存在,则九、(12分)设(X,Y)的密度函数为求(1)常数A;(2)P(X0.4,Y1.3);(3);(4)EX,DX,Cov(X,Y)。十、(8分) 电视台
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 期末试卷 答案 最新
限制150内