平面向量题型三-三角形“四心”与向量结合.doc
《平面向量题型三-三角形“四心”与向量结合.doc》由会员分享,可在线阅读,更多相关《平面向量题型三-三角形“四心”与向量结合.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题型三 三角形“四心”与向量结合(一)平面向量与三角形内心1、O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的( )(A)外心(B)内心(C)重心(D)垂心2、已知ABC,P为三角形所在平面上的一点,且点P满足:,则P是三角形的() 外心 内心 C 重心 D 垂心3、在三角形ABC中,动点P满足:,则P点轨迹一定通过ABC的: ( ) 外心 内心 C 重心 D 垂心(二)平面向量与三角形垂心 “垂心定理”H是ABC所在平面内任一点,点H是ABC的垂心.证明:由,同理,.故H是ABC的垂心. (反之亦然(证略)4、已知ABC,P为三角形所在平面上的动点,且
2、动点P满足:,则P点为三角形的 () 外心 内心 C 重心 D 垂心5、点O是三角形ABC所在平面内的一点,满足,则点O是的 ( )(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点(C)三条中线的交点(D)三条高的交点6、在同一个平面上有及一点满足关系式: ,则为的 () 外心 内心 C 重心 D 垂心 (三)平面向量与三角形重心 “重心定理”G是ABC所在平面内一点,=0点G是ABC的重心.证明 图中连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线.将代入=0,得=0,故G是ABC的重心.(反之亦然(证略)P是ABC所在平面内任一点
3、.G是ABC的重心.证明 G是ABC的重心 =0=0,即由此可得.(反之亦然(证略)7、已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P 满足:,则P的轨迹一定通过ABC的 () 外心 内心 C 重心 D 垂心8、已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足= (+2),则点P一定为三角形ABC的 ( )A.AB边中线的中点 B.AB边中线的三等分点(非重心)C.重心 D.AB边的中点(四)平面向量与三角形外心9、若 为内一点,则 是 的( )A内心 B外心 C垂心 D重心10、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = (五)平面向量与三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 题型 三角形 结合
限制150内