高考第一轮复习数列知识精讲知识点总结.doc
《高考第一轮复习数列知识精讲知识点总结.doc》由会员分享,可在线阅读,更多相关《高考第一轮复习数列知识精讲知识点总结.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流高考第一轮复习数列知识精讲知识点总结【精品文档】第 8 页 高考第一轮复习数列知识精讲 知识精讲一、等差数列与前n项和1等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示数学语言表达式:an1and(nN*),d为常数2等差数列的通项公式与前n项和公式(1)若等差数列an的首项是a1,公差是d,则其通项公式为ana1(n1)d.若等差数列an的第m项为am,则其第n项an可以表示为anam(nm)d.(2)等差数列的前n项和公式Snna1d.(其中nN*
2、,a1为首项,d为公差,an为第n项)3等差数列及前n项和的性质(1)若a,A,b成等差数列,则A叫做a,b的等差中项,且A.(2)若an为等差数列,当mnpq,amanapaq(m,n,p,qN*)(3)若an是等差数列,公差为d,则ak,akm,ak2m,(k,mN*)是公差为md的等差数列(4)数列Sm,S2mSm,S3mS2m,也是等差数列(5)S2n1(2n1)an.(6)若n为偶数,则S偶S奇;若n为奇数,则S奇S偶a中(中间项)4等差数列与函数的关系(1)等差数列与一次函数的区别与联系等差数列一次函数解析式anknb(nN*)f(x)kxb(k0)不同点定义域为N*,图象是一系列
3、孤立的点(在直线上),k为公差定义域为R,图象是一条直线,k为斜率相同点数列的通项公式与函数解析式都是关于自变量的一次函数k0时,数列anknb(nN*)图象所表示的点均匀分布在函数f(x)kxb(k0)的图象上;k0时,数列为递增数列,函数为增函数;k0时,数列为递减数列,函数为减函数(2)等差数列前n项和公式可变形为Snn2n,当d0时,它是关于n的二次函数,它的图象是抛物线yx2x上横坐标为正整数的均匀分布的一群孤立的点二、等比数列与前n项和1等比数列的有关概念(1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比
4、数列的公比,公比通常用字母q(q0)表示数学语言表达式:q(n2),q为常数(2)等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项即:G是a与b的等比中项a,G,b成等比数列G2ab.2等比数列的通项公式及前n项和公式(1)若等比数列an的首项为a1,公比是q,则其通项公式为ana1qn1;若等比数列an的第m项为am,公比是q,则其第n项an可以表示为anamqnm.(2)等比数列的前n项和公式:当q1时,Snna1;当q1时,Sn.3等比数列及前n项和的性质(1)若an为等比数列,且klmn(k,l,m,nN*),则akalaman.(2)相隔等距离的项组成的数列仍是等比数列,
5、即ak,akm,ak2m,仍是等比数列,公比为qm.(3)当q1,或q1且n为奇数时,Sn,S2nSn,S3nS2n仍成等比数列,其公比为qn.(4)若an,bn(项数相同)是等比数列,则an(0),a,anbn,仍是等比数列三、数列求和1公式法(1)等差数列的前n项和公式:Snna1d.(2)等比数列的前n项和公式:Sn2数列求和的几种常用方法(1)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和(3)错位相减法如果一个数列的各项是由一个
6、等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的(4)倒序相加法如果一个数列an的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的(5)并项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(1002992)(982972)(2212)(10099)(9897)(21)5 050.3常见的拆项公式(1);(2);(3).四、数列的综
7、合应用1等差数列和等比数列的综合等差数列中最基本的量是其首项a1和公差d,等比数列中最基本的量是其首项a1和公比q,在等差数列和等比数列的综合问题中就是根据已知的条件建立方程组求解出这两个数列的基本量解决问题的2数列和函数、不等式的综合(1)等差数列的通项公式和前n项和公式是在公差d0的情况下关于n的一次或二次函数(2)等比数列的通项公式和前n项和公式在公比q1的情况下是公比q的指数函数模型(3)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题3数列的应用题(1)解决数列应用题的基本步骤是:根据实际问题的要求,识别是等差数列还是等比数列,用数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 第一轮 复习 数列 知识 知识点 总结
限制150内