第1章分式的小结与复习.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第1章分式的小结与复习.ppt》由会员分享,可在线阅读,更多相关《第1章分式的小结与复习.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小结与复习第1章 分式要点梳理考点讲练课堂小结课后作业1.分式的定义:2.分式有意义的条件:g0分式无意义的条件:g= 0 分式值为 0 的条件:f=0且 g 0一、分式的概念及基本性质 类似地,一个整式 f 除以一个非零整式g(g 中含有字母),所得的商记作 ,把代数式 叫作分式,其中f是分式的分子,g是分式的分母,g0.fgfg要点梳理要点梳理即对于分式 ,有fg ( 0 ). ffhhgg h 分式的分子与分母都乘同一个非零整式,所得分式与原分式相等.3.分式的基本性质 分式的符号法则分式的符号法则:,.fffffggggg 1.分式的乘除法法则aca cbdb daca dadbdb
2、cbc分式的乘法分式的除法分式的乘方()nnnbbaa2.分式的加减ababccc(1)同分母分式相加减(2)异分母分式加减时需通分化为同分母分式加减.这个相同的 分母叫公分母.(确定公分母的方法:一般取各分母系数的最小公倍数与各分母各个因式的最高次幂的积为公分母)二、分式的运算三、整数指数幂(a0, m、n为正整数且mn)mm nnaaa010aa()11nnnaaa()=(a0,n为正整数)2.0次幂、负整数指数幂:1.同底数幂除法:3. 用科学记数法表示绝对值小于1的数:0.0001n个010n 1.解分式方程的思路:运用转化思想把分式方程去分母转化成整式方程求解.(3)验:把整式方程的
3、解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则, 这个解不是原分式方程的解,而是其增根,舍去;2.解分式方程的一般步骤:(1)化:方程的两边都乘以最简公分母,约去分母,化成整式 方程; (2)解:解这个整式方程;(4)写根:写出原方程的根.四、分式方程及其应用 3.列分式方程解应用题的一般步骤:(1)审:审清题意,弄清楚已知量和未知量的关系;(2)找:找出题目中的等量关系;(3)设:根据题意设出未知数;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:检验,既要检验所求的解是否为所列分式方程 的解,又要检验所求得的解是否符合实际意义;(7)答:写出
4、答案.考点一 分式的值为0,有、无意义 例1 如果分式 的值为0,那么x的值为 .211xx【解析】根据分式值为0的条件:分子为0而分母不为0,列出关于x的方程,求出x的值,并检验当x的取值时分式的分母的对应值是否为零.由题意可得:x2-1=0, 解得x=1.当x=-1时,x+1=0;当x=1时,x+1 0.【答案】1考点讲练考点讲练1 分式有意义的条件是分母不为0;分式无意义的条件是分母的值为0;分式的值为0的条件是:分子为0而分母不为0.2.如果分式 的值为零,则a的值为 .44aa4方法总结针对训练1.若分式 无意义,则a的值为 .13x-3考点二 分式的有关计算 例2 已知分式 x=2
5、,y= 1, 求 值.22112()2xxyxyxxyy【解析】本题中给出字母的具体取值,因此要先化简分式再代入求值.把x= 2 ,y=1代入得 解:原式=22( - )-,( - )()2xx yx yx y xyxxy 原式=2 11=.2 13 对于一个分式,如果给出其中字母的取值,我们可以先将分式进行化简,再把字母取值代入,即可求出分式的值.但对于某些分式的求值问题,却没有直接给出字母的取值,而只是给出字母满足的条件,这样的问题较复杂,需要根据具体情况选择适当的方法.方法总结3.已知x2-5x+1=0,求出 的值.441xx 解: 因为x2-5x+1=0, 得 即150,xx 15.x
6、x 又因为4224222211()21()22(252)2527.xxxxxx针对训练考点三 分式方程的解法例3 解下列分式方程: 【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解解:(1)去分母得x+1+x1=0,解得x=0, 经检验x=0是分式方程的解; (2)去分母得x4=2x+23,解得x=3, 经检验x=3是分式方程的解1143(1)0;(2)2.1111xxxxx解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根方法总结22161.24xxx 4.解方程:解:最简公分母为(x+2)(x2),去分母
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 小结 复习
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内