切线长定理课件 (2).ppt
《切线长定理课件 (2).ppt》由会员分享,可在线阅读,更多相关《切线长定理课件 (2).ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、问题问题1、经过平面上一个已知点,作已知、经过平面上一个已知点,作已知圆的切线会有怎样的情形?圆的切线会有怎样的情形?OOOP PPA问题问题2、经过圆外一点、经过圆外一点P,如何作已知,如何作已知 O的的切线?切线? O。ABP思考思考:假设切线:假设切线PA已作出,已作出,A为切点,为切点,则则OAP=90,连接连接OP,可知,可知A在怎样在怎样的圆上的圆上?问题问题2、经过圆外一点、经过圆外一点P,如何作已知,如何作已知 O的的切线?切线?过过 O外一点作外一点作 O的切线的切线OPABO一、切线长定义一、切线长定义 经过圆外一点做圆的切线,这点和切点之间的经过圆外一点做圆的切线,这点和
2、切点之间的线段的长叫做线段的长叫做这点到圆的切线长。这点到圆的切线长。OPAB切线与切线长的区切线与切线长的区别与联系:别与联系:(1 1)切线是一条与圆相切的直线;切线是一条与圆相切的直线;(2 2)切线长是指切线长是指切线上某一点切线上某一点与与切点切点间的线段的长。间的线段的长。 若从若从OO外的一点引两条切线外的一点引两条切线PAPA,PBPB,切点,切点分别是分别是A A、B B,连结,连结OAOA、OBOB、OPOP,你能发现什么,你能发现什么结论?并证明你所发现的结论。结论?并证明你所发现的结论。APO。BPA = PBOPA=OPB证明:证明:PAPA,PBPB与与OO相切,点
3、相切,点A A,B B是切点是切点 OAPAOAPA,OBPB OBPB 即即OAP=OBP=90 OA=OB,OP=OP RtRtAOPRtAOPRtBOP(HLBOP(HL) ) PA = PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论PA、PB分别切分别切 O于于A、BPA = PBOPA=OPB 从圆外一点引圆的两条切线,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。两条切线的夹角。 二、切线长定理二、切线长定理APO。B几何语言几何语言:反思反思:切线长定理为证明:切线长定理
4、为证明线段相等线段相等、角相角相等等提提 供了新的方法供了新的方法我们学过的切线,常有我们学过的切线,常有 五个五个 性质:性质:1 1、切线和圆只有一个公共点;、切线和圆只有一个公共点;2 2、切线和圆心的距离等于圆的半径;、切线和圆心的距离等于圆的半径;3 3、切线垂直于过切点的半径;、切线垂直于过切点的半径;4 4、经过圆心垂直于切线的直线必过切点;、经过圆心垂直于切线的直线必过切点;5 5、经过切点垂直于切线的直线必过圆心。、经过切点垂直于切线的直线必过圆心。6 6、从圆外一点引圆的两条切线,它们的切线长相等,、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 切线长定理课件 2 切线 定理 课件
限制150内