X射线荧光分析的基本原理(11页).doc
《X射线荧光分析的基本原理(11页).doc》由会员分享,可在线阅读,更多相关《X射线荧光分析的基本原理(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-X射线荧光分析的基本原理1. 绪论物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内
2、层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.00110nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为K谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为K谱线,其他层的电子发生跃迁时的情况依此类推(如图1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分
3、析,称为X射线荧光光谱分析。图1.1原子结构示意图在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线KK,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。2. X射线与固体之间的相互作用X射线照射在固体表面上,主要会产生吸收和散射两种效应。固体物质可以吸收一部分射线,并可以使X射线在固体表面发生散射,使X射线的强度衰减。衰减率与样品的厚度成正比。X射线的衰减是由X射线的散射和吸收引起的,其中,起主要的是吸收效应。2.1X射线的吸收当X射线的强度和样品的厚度一定时,样品对X射线的吸收主要取决于样品的吸收系数。当入射
4、X射线的波长等于一个特定值时,吸收系数发生突变。各种元素吸收系数突变时的波长称为吸收限。欲从给定元素原子的特定能级上逐出电子,所需的原级X射线波长应小于此元素该能级的吸收限,即大于使特定能级电子被逐出时所需的最小能量(根据波的能量公式E=h v=hc/【其中h为普朗克常量,v为波的传播速度,c为光速,为波长】,波的能量与波的波长成反比)。原级X射线(连续X射线,能量范围广)照射到样品表面时,除去极小的一部分被样品表面散射外,大部分被样品中的元素吸收,并放射出相应的荧光X射线。2.2X射线的散射与衍射X射线的散射可分为非相干散射和相干散射。非相干散射:X射线光子与固体原子中束缚较松弛的电子作非弹
5、性碰撞时,光子把部分能量传给电子,光子能量降低且改变方向,散射的X射线波长变长,此种散射射线周期与入射线无确定关系,形成连续的背景,对测量不利。相干散射:X射线光子与固体原子中束缚教紧的电子作弹性碰撞时,散射X射线与入射X射线方向不同,强度相同,无能量损失,相干散射是衍射的基础。相干散射发生在晶体表面。晶体原子存在周期性的三维空间点阵结构,点阵的周期与入射射线具有同一数量级,因此,晶体可作为衍射X射线的光栅。图1.2晶体衍射示意图由图1.2所示,在B点入射的X射线比在A点入射的X射线的反射线的光程多DB+DF距离,由图可见BD=DF=d*sin,根据衍射条件,只有光程差为波长的整数倍时,电磁波
6、才相互加强,出现衍射现象。因此,发生衍射的条件为:n=2dsin(1)式中:-衍射角n-衍射级数d-晶体的晶面间距-射线波长式(1)即为著名的布拉格衍射方程。布拉格衍射方程可以应用到以下两方面:1、 用已知波长的X射线照射晶体,测定衍射角,可用来鉴别晶体的结构种类。2、 用已知晶面间距d的晶体,测定待测样品荧光X射线发生衍射时的衍射角,可求出X射线的波长,不同元素的荧光X射线波长不同,从而可判断是何种元素发出的荧光X射线,进而确定样品中含有的元素。同时由于不同元素的荧光X射线的波长是不同的,当我们改变晶体的衍射角时,可以将含有不同元素的荧光X射线分离,可以分别测定每一种元素的荧光X射线强度。例
7、:含有K K(=0.3744nm)和Ca K(=0.3360nm)两种谱线的混合谱线,采用LiF(200)晶体进行波长色散:K K=arcsin(/2d)=arcsin3.744/(2*2.014)=68.35Ca K=56.53改变晶体放置的角度,可分别测定混合谱线中 K、Na元素荧光X射线强度。2.2内层电子被激发后的驰豫过程处于激发态的原子自发的从较高的能量状态跃迁至较低的能量状态,这种过程称为驰豫过程。原子在驰豫过程中将多余的能量释放出来,有可能发生辐射跃迁(将多余能量通过辐射的方式释放出来,即辐射出X射线)。也有可能发生非辐射跃迁(多余的能量将原子核外层电子逐出,放射出俄歇电子)。1
8、) 辐射跃迁:辐射跃迁主要是辐射出荧光X射线。当内层电子被激发后外层电子自发跃迁并将多余的能量以X射线的形式释放出来。由于各种原子的原子结构不同,所以核外的能量状态也各不相同。因此,不同能级之间的能量差只与原子的种类有关。各种元素产生的荧光X射线的能量状态各不相同(波长不同)。因此,通过测定未知样品的荧光射线波长,即可判断样品中含有何种物质。2) 俄歇电子发射:如果内层电子被激发后所释放的能量将另一个核外电子逐出,使之成为自由电子,该电子就称为俄歇电子。在一般情况下,在使用原级X射线照射待测样品时辐射跃迁和俄歇电子发射同时发生,但由于原子结构的不同,发生两种过程的几率不同。对轻元素而言,轻元素
9、的原子核的束缚力较小,外层电子容易被内层电子跃迁放射的能量激发,比较容易产生俄歇电子。这样造成的结果使得实际的荧光X射线强度大大小于我们按能级跃迁计算出的理论荧光X射线强度。而重元素原子核对核外电子的束缚力较大,比较不容易放射出俄歇电子。实际荧光X射线的强度与理论值比较接近。由于轻元素受激发后产生的荧光X射线较小,因此使用荧光分析的方法进行分析时,对轻元素的灵敏度较差。2.3利用X射线荧光分析的分析方法利用X射线荧光可进行定性分析和定量分析。1、 定性分析:根据布拉格方程式。用已知晶面间距d的晶体,测定X射线发生衍射时的衍射角,使用同一晶体时不同元素的荧光X射线衍射角是不同的,可以和预设的使用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 射线 荧光 分析 基本原理 11
限制150内