石墨烯和纳米碳材料的导热性能的研究.doc
《石墨烯和纳米碳材料的导热性能的研究.doc》由会员分享,可在线阅读,更多相关《石墨烯和纳米碳材料的导热性能的研究.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、石墨烯和纳米碳材料的导热性能的研究 Alexander A. Balandin 近年来,在科学领域和工程领域,人们越来越多地去关注导热性能好的材料。散热技术已经成为电子工业持续发展的一个重要的话题,低维结构的材料在热传导方面显示出了优异的性能。就导热能力而言,碳的同素异构体及其衍生品占据了举足轻重的地位。在室温下的碳材料的导热系数跨越了一个非常大的范围超过了五个数量级从导热系数最低的无定型碳到导热系数最高的石墨烯和碳纳米管。在这里,我回顾一下以石墨烯碳材料为热点的最近热性能的研究成果,碳纳米管和纳米级的碳材料在研究方面遇到了不同程度的难题。在二维晶体材料方面,尤其是石墨烯,人们非常关注尺寸对热
2、传导的影响。我也描述了石墨烯和碳材料在电子传热机理上的应用前景。 实际生产应用和基础科学的发展表明了材料热性能研究的重要性。由于功耗散热水平的提高,导热技术已经成为电子工业持续发展的一个非常重要的热点。对导热性能非常好的材料的研究严重影响着下一代集成电路和3D电子产品的设计进程。在光电子和光子设备领域我们也遇到了类似的需要导热处理的问题。另外,电热能量转换技术需要材料具有很强的抑制热扩散的能力。 材料的导热能力由其电子结构决定,所以一种材料热性能原理可以描述另外一种材料的热性能现象。材料热性能的变化只是在纳米尺度上变化。由于声子散射边界的增多或者声子色散的变化,纳米管和大多数晶体将不再传热。同
3、时,对二维和一维晶体的热传导理论的研究解释了材料内在优异的热传导性能的原因。二维晶体导热性能的差异意味着不像非晶体那样,它恢复材料的热平衡不能仅仅靠晶体的非简谐振动,因为这不但需要限制系统的尺寸,而且还需要掺杂进非晶体结构,这样才能符合热传导性能的物理意义。这些发现引发了在低维系统中对傅里叶定律的实用性的非议。 碳材料具有非常多的同素异构体,在热性能方面占据了举足轻重的低位(如图,1a)。碳材料不同的同素异构体的热传导率跨越了很大的一个范围五个数量级非晶碳的热导率为0.01W. mK1,在室温条件下金刚石或者石墨烯的热导率为大约2000W. mK1。型金刚石的热导率在77K的温度下达到了100
4、00W. mK1,碳纳米管的热导率在室温下达到了3000到3500 W. mK1之间,超过了金刚石的热导率,成为热导率最高的材料。 在严格保证是2D晶体的第一次热传导的试验研究中,我们成功地进行了对石墨烯的剥离以及对石墨烯优异电导率的检测。在系统的维数从2D变为3D时,高质量的薄层石墨烯的商业化将会影响热性能变化的实验性研究。石墨烯16-19显露出比绝大多数石墨还高的热性能参数,其第一次热性能的测试激发了人们对这种材料的热性能,更广地说,是这种低维度晶体的导热能力研究的兴趣。越来越多的人开始加入到石墨烯的研究,但是却常常得到相反的结果,这就要求我们要重新慎重地检查我们以前的研究。像这样着重对石
5、墨烯研究的回顾检查是非常有必要的,这是因为这种材料提供了近期热性能研究的突破点,并且它可能有助于去理解在低维度材料中的热传导机理。这些构想都将值得我们对石墨烯研究的回顾,并且有助于我们研究碳的衍生物,比如石墨烯和碳纳米管的热性能参数。热传导的基础在讨论纳米碳材料的详细性能之前,描述主要的热传导参数和概述纳米尺寸的影响是非常必要的。热导率是从傅里叶变化中引进来的,q = KT,其中q是热通量,K是导热系数,T是温度梯度。在这个表达式中,K是一个常量,在温度变化范围比较小时才是有效的。在一个温度变化比较大的环境下,K是T的函数。在各向异性材料中,K随晶体取向而变化,并由张量表示。 固体材料的热量是
6、靠声学声子和电子传导的也就是晶格的离子核心的振动这样以便于Kp + Ke,其中Kp和Ke分别是声子和电子的贡献值。在金属中,Ke是影响自由热携带者浓度最主要的因素。在纯铜中纯铜是最好的热传导材料在室温下其K 400WmK-1,Kp的变化范围在1-2%。对电导率的测量是根据KiedemannFranz定律,我们得出了Ke的大小,Ke/(T) = 2kB2/(3e2),其中kB是玻尔兹曼常数,e是电子电荷。碳材料的热导率通常是由声子决定的,甚至对于具有金属性能的石墨也是这样的。图1.碳同素异构体及其衍生品的热性能参数a图所示数据来源于文献资料中的平均值。图上的轴不是按比例绘制的。b是块状碳的同素异
7、构体导热系数关于T的函数。这些图是参照被广泛接受的参考29得到的。那个曲线菱形图是电绝缘的第二种型号的菱形图;多晶石墨其实是一种AGOT石墨,AGOT是高纯度的桥搭石墨;热解石墨是一种类似于HOPG的高质量石墨。我们要注意热解石墨和无取向的多晶石墨在K中的不同。热解石墨的K值决定了在室温下块状石墨的2000mK-1的极限。在比较低的温度下,K与T成正比,其中的变化幅度比较大,的值受石墨的质量和微晶尺寸的影响。 由晶格振动引起的高效率的传热是因为有非常强的sp2键导致的,然而,Ke在混合材料当中可能会是非常重要的一个参数。 声子的导热系数可表示为Kp =jCj() vj2 ()j d.其中j是声
8、子的极化分支,也就是说它是两个横向声子分支和一个纵向声子分支;v是声子群速度,也即在很多固体当中被描述为声音的大概速度;是声子弛豫时间,是声子频率,C是热容。声子的平均自由程()在=时,是和弛豫时间有关的。在弛豫时间的近似值中,各种限制的散射机制是附加上去的也就是说1 = i-1,其中i表示了散射过程。在一些典型的固体当中,声子携带了大量的热,并被其他声子、晶格缺陷、杂质、传导电子和表面所散射。一个关于Kp的更简单的方程Kp = (1/3) Cp,这个方程来自原气体分子运动理论,其中Cp是具体的热容。 区分扩散和弹道声子输送机制是非常重要的。如果试样的尺寸L比大,那么热传导可以被描述为热扩散,
9、也就是说声子被多次散射。当L 时,热传导称为弹道传热。傅里叶定律已经假设出热扩散传导。当热导率被晶格的非简谐振动所限制的时候,它的值将是一个常数。当晶格的势能高于从平衡位置发生位移的二阶离子的势能时,晶格的振动就是非简谐振动。当材料是没有缺陷的全晶体时,材料所固有的K值就会达到极限值,并且声子只能被其他声子散射,这样的散射是靠非简谐振动才能产生。非谐声子的相互作用导致在三维空间中k的值是有限值,我们可以用翻转理论描述准则中相互作用。晶体非谐度是由Gruneisen参数表征的,这样我们就可以看到散射率为22时Umklapp过程的样子。当导热系数被外在因素影响的时候,其值将是一个变量,比如受粗糙边
10、界声子或者声子缺陷散射的影响。 在纳米结构中,K的值可以通过边界散射来减小,其值大概表示为1/B = (/D)(1p)/(1+p)。其中B是声子周期,1/B是声子散射频率,D是纳米结构或者是晶粒大小,p是镜面反射参数,这个参数被定义为边界镜面散射的概率。动量守恒的镜面散射(p=1)不增加热阻。只有粗糙边界的弥散性声子散射(p=0)才限制的大小,并且也改变了动能。我们可以从表面的粗糙度中得出p值或者把它当做一个实验数据的拟合参数。当边界散射占主要影响因素并且Kp Cp Cp2B CpD时,K和D成正比关系。在D 的纳米结构中,在由约束而导致的u的变化的情况下和对复杂的尺寸的依赖性的情况下,声子的
11、散射可以被修正。Cp是由声子的密度所决定的,这就导致了在3D、2D、1D的系统中Cp(T)的值很容易受影响,并在低的T值下(参考22、27)其值被反应在K(T)中。比如,在低的T值的块状晶粒中,K(T)和T3成正比关系,而在2D系统中和T2成正比关系。块状碳的同素异构体让我们回顾一下块状碳的同素异构体石墨、金刚石、无定形碳的热性能,它们的相关参数就为我们研究石墨烯和碳纳米管提供了某些参照。这也有助于区别普通质量的材料在低维态新出现的物理结构。很难发现有其他材料的K值像石墨这样被严格地去研究的,其中一个原因是核工业的需要。具有讽刺意义的是,关于石墨的数据有时候很难被检测出来,因为关于石墨的研究是
12、上个世纪做的,而且又被出版在一个非常局限的行业中。相应地,现代的研究者总有一个困惑,他们搞不清楚高质量的石墨的基底平面K的值是多少。如图1b,图中表示出了两种类型的高纯度石墨(sp2键)、金刚石(sp3)和非晶碳(无序的sp2和sp3的混合物)的K值。这些数据来自于参考29的建议值,参考29上的数据来源于数以百计的研究论文和被广泛接受的实验数据。热解石墨与高取向的热解石墨(HOPG),它有一个在室温下为2000 MK1的K值。它的正交平面的K值要比HOPG小两个数量级。另一种通过不同技术生产的高纯度的搭接石墨,其K值为200 MK1时要比HOPG小一个数量级。K的各向异性要明显小很多。HOPG
13、由于是大颗粒晶粒制造出来的,彼此的结合也非常地好,这样它的整体性能就类似于单晶,那么K值的不同也就显而易见了。搭接的石墨也是多晶的,但是晶轴并没有高度取向化,并且晶粒的边界非常明显。最后,非HOPG多晶石墨的K的值就会被晶粒的大小所严格限制。同样的因素限制了石墨烯的气相沉积制备,石墨烯是无取向晶粒组成的多晶材料。因此,我认为2000 MK1条件下K的值可以作为室温下块状石墨的极限。任何一个小的K值都可以表示低质量的石墨的K的极限值,其中K的值被晶粒边界声子散射、缺陷、或粗糙的样品的边缘所限制。HOPG的实验K值和理论预言的石墨的K的值非常吻合。在所有的块状碳的同素异构体中,声子传热是最重要的途
14、径。在金刚石和HOPG中,K的值分别在 70 K和 100 K时达到了最大值。但是在更高的T值下,K的值反而减小到1/T,这正是多晶固体的特征,其中K的值是被Umklapp的散射所限制。在无定型的碳材料中,K的值变化范围从在T=4K时为0.01 MK1到在T=500K时为2 MK1。其值是和T成正比的,这也正是各向同性材料所预期的结果,在各向同性材料中的热传导机制是局部激励跳跃的。如图1b所示,HOPG和搭接的石墨的K值在低温下受T的影响不同。众所周知,石墨的K(T)的变化幅度比较大,这不仅被声子密度通过Cp所证实,而且也由石墨的晶粒大小和质量所证实。无序的和纳米结构的碳 让我们来谈论一下当K
15、被无序的或者是晶粒边界而不是被内在的晶格动态约束时材料的热性能吧。这类材料有一个非常典型的是类金刚石结构(DLC),这是一种包含sp3键的亚稳结构。DLC薄膜应用在磁性存储磁盘的光学窗口的保护涂层上,也应用于医学当中。DLC是由非晶碳和氢化合金组成的。含有Sp3的无氢DLC被称为四面体非晶碳。实验研究表明DLC的热传导大部分被无序的sp3相的量和结构所主导。如果sp3相是无定型的,那么K的值近似与sp3的含量、密度和弹性常数成正比(如图2a)。聚合物和石墨化的DLC薄膜有最小的K值,为0.10.3 MK1;氢化非晶碳有一个1 MK1的值;四面体非晶碳具有最高的K值,在室温下达到了10 MK1。
16、在无定型固体当中,四面体非晶碳可能具有最高的K值。如果sp3相具有一定的取向度即使是小晶粒,比如纳米金刚石那么当密度、杨氏模量、和sp3含量给定时,K值将会增加。在CVD制备多晶金刚石薄膜过程中非纳米晶(UNCD),纳米晶(NCD)和微晶(MCD)(如图2b)重新激发了研究者研究它们热性能的兴趣。大多数多晶金刚石的研究者认为K的值受D的影响非常大,变化幅度从在UNCD中的110 W mK-1到在MCD中的(D34m)的550 MK1。微观结构的影响大小可以从Kp (1/3)CD的公式中大概推算出来,这也就假设了在晶粒内部,声子的传播和在团晶中的传播一样。这也被对多晶金刚石局部的K值高分辨率的测
17、量所证实。通过晶粒边界的散射和晶粒内部的缺陷的引入导致一定大小的弛豫时间,我们可以从而得到一个更精确的理论描述。声子跳跃的模型包括通过晶界的声子传输模型都和不同维度的多晶金刚石吻合的很好(如图2c)。一些研究表明热传导在比较小的维度的UNCD中的热传导可能不一样,它们的热传输是通过晶粒边界的内在属性所控制的。晶粒的边界包含sp2相,而不是晶粒内部的sp3的碳相。如果复合硅/多晶金刚石的衬底的热阻小于硅晶片,那么我们就可以把多晶金刚石薄膜应用在集成电路的热传导当中。在优化硅/多晶金刚石衬底上我们要有所权衡。MCD薄膜由于有大晶粒所以有更高的K值,但是因为有Si表面比较粗糙,这也就影响了材料的结构
18、热阻。NUCD形成了更好的表面,但是其上有非常少的纳米尺度的晶粒。最近的研究进展表明了在这个研究方向上我们是有所成绩的(如图,2d)。它表明在室温下,复合Si/多晶金刚石的衬底上有更高的热阻,优于在更高的温度下(在360K以上)的硅晶片的热阻,这个温度也是电子设备所常有的温度。碳纳米管碳纳米管和石墨烯的热传导不像NCD和DLC的,它们的可以通过致密的sp2晶格的固有属性所主导,而不是被边界声子散射或紊乱所主导,这样就会得到很高的K值。从理论的角度来看,碳纳米管和石墨烯是非常相似的,但是碳纳米管有更大的曲率和不同量化条件下的声子模式。在碳纳米管的热传导问题中,我们必须要考虑到二维和一维系统当中对
19、K值的不同的定义。虽然石墨烯结构很简单,但是我一开始就用碳纳米管的实验数据,因为我对它们热性能的研究已经超过十年了。碳纳米管成为第一个报道过的K值超过块状石墨和金刚石的纳米材料。 表1汇总了单壁碳纳米管(SWCNTs)和多层碳纳米管(MWCNTs)的实验数据。理论的数据是用来作对比的。还有大量的数据分散在各个报道当中,这些数据是在室温的状态下测定的CNTs的K值,波动范围在1100 mK1 (参考. 71) 到 7000 MK1 之间(参考. 64)。包含在实验中的最大的K的值有助于实现碳纳米管的弹道运输。在室温下,对于某些特殊的CNTs中MWCNTs的K值为3000 MK1(参考10)和SW
20、 CNTs(参考11)的K值为3,500 MK1。这些值高于块状石墨2000 MK1的极限。因此,CNTs是一种传热不受外在因素,比如说边界散射、在粗糙界面的许多半导体纳米线等限制的纳米结构。 在室温下从测量中得到的最大的值是700750 nm。当被测量的CNTs的长度超过2m时,声子的运输就会一直在扩散,但是接近于弹道热传输。在T30 K时,SWNCT边界的能量独立的值就会达到0.51.5 mm。CNTs的K值在T 320 K(参考10)时得到最值,这和块状晶相比已经处于非常高的温度了。这表明Umklapp声子测量导热系数的方法可以被分成两组:稳态和瞬态两组。在瞬态的方法中,温度梯度被标记为
21、时间的函数,这样可以在一个大的T的波动范围中可以快速测量热扩散的值。Cp和质量密度(m)的值必须通过对K = DTCpm的计算单独地确定其大小。如果K值决定了材料的导热能力的好坏,那么DT就表征了导热的速率。虽然很多机理都是依靠电子提供热量,但是这里也有一些其他的机理,它们是靠光来提供热量。在很多稳态的方法中,我们常常用热电偶来测量T的大小。暂态的薄膜3技术采用的T值是受电阻率的影响的,电阻率是由K的值得出来的。通过光热拉曼技术(图a),我们对石墨烯的热传导进行了第一次试验研究。我们用激光束提供能量,然后集中照射连接在散热器两端的改性石墨烯层(比如说,图b表示n=2时矩形FLG在Si晶片表面3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 石墨 纳米 材料 导热 性能 研究
限制150内