《流体力学》典型例题(19页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《流体力学》典型例题(19页).doc》由会员分享,可在线阅读,更多相关《《流体力学》典型例题(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-例题力学典型例题例题1:如图所示,质量为m5 kg、底面积为S40 cm60 cm的矩形平板,以U1 m/s的速度沿着与水平面成倾角的斜面作等速下滑运动。已知平板与斜面之间的油层厚度1 mm,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。解:由牛顿内摩擦定律,平板所受的剪切应力又因等速运动,惯性力为零。根据牛顿第二定律:,即:例题2:如图所示,转轴的直径d0.36 m、轴承的长度l1 m,轴与轴承的缝隙宽度0.23 mm,缝隙中充满动力粘性系数的油,若轴的转速。求克服油的粘性阻力所消耗的功率。解:由牛顿内摩擦定律,轴与轴承之间的剪切应力粘性阻力(摩擦力):克服油的粘性阻力所
2、消耗的功率:例题3:如图所示,直径为的两个圆盘相互平行,间隙中的液体动力黏度系数为,若下盘固定不动,上盘以恒定角速度旋转,此时所需力矩为,求间隙厚度的表达式。解:根据牛顿黏性定律 例题4:如图所示的双U型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度(取管中水的密度1000 kg/m3)。解:根据等压面的性质,采用相对压强可得:例题5:如图所示,U型管中水银面的高差h0.32 m,其他流体为水。容器A和容器B中心的位置高差z1 m。求A、B两容器中心处的压强差(取管中水的重度9810 N/m3,水银的重度133416 N/m3)。解:根据等压面的性质可得:,例题6:如图所示,
3、仅在重力场作用下的无盖水箱高H1.2m,长L3m,静止时盛水深度h=0.9m。现水箱以的加速度沿水平方向做直线运动。若取水的密度,水箱中自由水面的压强98000Pa。试求:(1)水箱中自由水面的方程和水箱中的压强分布。(2)水箱中的水不致溢出时的最大加速度。解:(1)如图所示,将固定在水箱上的运动坐标系的原点置于静止时自由水面的中点,z轴垂直向上,x轴与加速度的方向一致。则水箱运动时单位质量水受到的质量力和水的加速度分量分别为代入非惯性坐标系中的压力全微分公式,得 积分得 利用边界条件确定积分常数:在坐标原点O()处,得由式可得水箱内的压强分布对于水箱中的等压面,有,所以由式可得等压面的微分方
4、程积分得 上式给出了一簇斜率为的倾斜平面,就代表水箱加速运动的一簇等压面,自由水面是等压面中的一个,因自由水面通过坐标原点,可确定积分常数。因此自由水面方程为(2)假设水箱以加速度运动时,其中的水刚好没有溢出,且此时水箱右侧水的深度为,则根据加速前后水的体积不变的性质可得 又根据水箱作水平等加速直线运动时,自由表面的斜率与几何长度之间的关系 和式联立求解,得:例题7:有一盛水的旋转圆筒,直径D1 m,高H2 m,静止时水深为h1.5 m。求:(1)为使水不从筒边溢出,旋转角速度应控制在多大?(2)当6 rad/s时,筒底G、C点处的相对压强(相对于自由水面)分别为多少?解:(1)若将坐标原点放
5、在筒底的中心位置,并假设自由表面最低点的高度为,则由:,可推出自由水面(为一等压面)的方程:根据在水没有溢出的情况下,旋转前后水的体积不变的性质,可得:由此可求得:,带入自由表面方程得:若使达到某一最大值而水不溢出,则有时,带入上式,得(2)旋转容器中任意一点的相对压强可表达为将G点条件:带入得:同理,将C点条件:带入得:例题8:如图所示为一圆柱形容器,直径为,高,容器内装水,水深为,使容器绕垂直轴做等角速旋转,试确定水正好不溢出来的转速。解:以自由液面的最低处为坐标原点,自由液面方程为旋转后无水的体积为: 例9 已知平面直角坐标系中的二维速度场。试求:(1)迹线方程;(2)流线方程;(3)时
6、刻,通过(1,1)点的流体微团运动的加速度;(4)涡量,并判断流动是否有旋。解:(1)将代入迹线方程得:解这个微分方程得迹线的参数方程:其中,是积分常数(拉格朗日变数)。消掉时间t,并给定即可得到以表示的流体质点的迹线方程。例如:已知欧拉法表示的速度场,求流体质点的迹线方程,并说明迹线形状。将代入迹线微分方程:,得:分离变量并积分,得: 从上两式中消去时间t得迹线方程: 即: 可见,该流场中流体质点的迹线为一双曲线。(2)将代入流线微分方程得:将看成常数,积分上式得流线方程:或 (3)由质点导数的定义可得流动在x和y方向的加速度分量分别为:所以,时刻,通过(1,1)点的流体微团运动的加速度为:
7、(4)由涡量的定义,对于题中所给的平面流动有:所以流动无旋。例10 已知二维速度场为,。(教材P68)(1)证明该速度分布可以表示不可压缩流体的平面流动;(2)求该二维流场的流函数;(3)证明该流动为势流;(4)求速度势函数。解:(1)平面流动判定不可压缩流体平面流动的连续方程为由已知条件可求,可见速度分布满足连续方程。故可以表示不可压缩流体的平面运动。(2)流函数的确定按流函数定义和已知条件有 (1) (2)积分式(1)得 (3)为确定函数,将式(3)对求偏导,并按流函数定义令其等于,即 (4)由式(4)可以判定,积分求得 (5)其中为积分常数。将式(5)代入式(3),得: (3)有势流动判
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体力学 典型 例题 19
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内