2022年北师大版七年级数学下册三角形重点知识汇总,推荐文档 .pdf
《2022年北师大版七年级数学下册三角形重点知识汇总,推荐文档 .pdf》由会员分享,可在线阅读,更多相关《2022年北师大版七年级数学下册三角形重点知识汇总,推荐文档 .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 第三章三角形一认识三角形1三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。注意:组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。2、三角形分类按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。3、关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。三角形三边关系的另一个性质: 三角形任意两边之差小于第三边。设三角形三边的长分别为 a、b、c 则:一般地,对于三角
2、形的某一条边 a 来说,一定有 |b-c|ab+c 成立;反之,只有|b-c|ab+c 成立, a、b、c 三条线段才能构成三角形;特殊地,如果已知线段a 最大,只要满足b+ca,那么 a、b、c 三条线段就能构成三角形; 如果已知线段a 最小,只要满足 |b-c|a,那么这三条线段就能构成三角形。4、关于三角形的内角和三角形三个内角的和为 180直角三角形的两个锐角互余;一个三角形中至多有一个直角或一个钝角;一个三角中至少有两个内角是锐角。5、关于三角形的角平分线、高线和中线三角形的角平分线、中线和高都是线段,不是直线,也不是射线;任意一个三角形都有三条角平分线,三条中线和三条高;任意一个三
3、角形的三条角平分线、 三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。F直角三角形钝角三角形锐角三角形鹏翔教图 1ADCEBDBACFEADCB二、图形的全等能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - -
4、 - 名师精心整理 - - - - - - - 第 1 页,共 12 页 - - - - - - - - - 2 小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。三、全等三角形1全等三角形的概念能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。2、全等三角形的性质:对应边相等,对应角相等。应用:证明两条线段相等和两个角相等。3、三角形全等的条件(1)三边对应相等的两个三角形全等,
5、简写为“边边边”或“SSS ”(2)有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”(3)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA ”(4)两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS ”4、直三角形全等的条件(1)斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL ”。这只对直角三角形成立。(2)直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“ SAS ”、“ASA ”、“ AAS ”、“SSS ”来判定。直角三角形的其他判定方法可以归纳如下:两条直角边对应相等的两个
6、直角三角形全等;有一个锐角和一条边对应相等的两个直角三角形全等。三条边对应相等的两个直角三角形全等。四作三角形1已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA ”)来作图的。2已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS ”)来作图的。3已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS ”)来作图的。五、利用三角形的全等测距离,即三角形全等的应用第三章三角形经典练习一. 选择题:1. 下列四种图形中,一定是轴对称图形的有() 等腰三角形 等边三角形 直角三角形 等腰直角三角形A. 1 种 B. 2种 C. 3种 D.
7、4种2. 到三角形三边距离都相等的点是三角形()的交点A. 三边中垂线B. 三条中线C. 三条高D. 三条内角平分线3. 到三角形三个顶点距离都相等的点是三角形()的交点A. 三边中垂线B. 三条中线C. 三条高D. 三条内角平分线4. 如图,OP平分,MON PAON于点A,点Q是射线OM上的一个动点,若名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 12 页 - - - - - - - - - 3 2PA,则PQ的最小值为()A.1 B.2 C.3 D. 4 5. 如
8、图,已知 12,则不一定能使ABDACD的条件是()AABAC BBDCD CBC D BDACDA6、如图下列条件中,不能证明ABDACD的是(). A.BD=DC,AB=AC B.ADB=ADC C.B=C,BAD=CAD D.B=C,BD=DC第 6 题图7 下列命题中,真命题是() (A) 周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;(C) 周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等8 如图所示,90EFo,BC,AEAF, 结论:EMFN; CDDN;FANEAM;ACNABM其中正确的有(第 4 题)AONMQP名师资料总结 - -
9、-精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 12 页 - - - - - - - - - 4 A1 个B2 个C3 个D4 个9. 如 图2 所 示 , 在ABCRt中 ,90A,BD平 分ABC, 交AC于 点D, 且5,4 BDAB,则点D到BC的距离是:(A) 3 (B)4 (C)5 (D)6 10如图,给出下列四组条件:ABDEBCEFACDF,;ABDEBEBCEF,;BEBCEFCF,;ABDEACDFBE,其中,能使ABCDEF的条件共有()A1 组B2 组C3 组D4 组1
10、1. 如图,DE,分别为ABC的AC,BC边的中点, 将此三角形沿DE折叠,使点C落在AB边上的点P处若48CDE,则APD等于()A42 B48 C 52 D58名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 12 页 - - - - - - - - - 5 12、 如图,为估计池塘岸边A、B两点的距离, 小方在池塘的一侧选取一点O, 测得15OA米,10OB米,A、B间的距离不可能是()A5 米B10 米C 15 米D20 米13、下列命题中,错误的是() A三角形两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年北师大版七年级数学下册三角形重点知识汇总 推荐文档 2022 北师大 七年 级数 下册 三角形 重点 知识 汇总 推荐 文档
限制150内