二面角8种求法专题(8页).doc
《二面角8种求法专题(8页).doc》由会员分享,可在线阅读,更多相关《二面角8种求法专题(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-二面角求法专题正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。BAOl一、 平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面
2、角,如图二面角-l-中,在棱l上取一点O,分别在、两个平面内作AOl,BOl,AOB即是所求二面角的平面角。O1OEADD1C1B1A1CB例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。HOGFEADD1C1B1A1CB二、 利用三垂线定理法BAOl此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。如图二面角-
3、l-中,在平面内取一点A,过A作AB平面,B是垂足,由B(或A)作BO(或AO)l,连接AO(或BO)即得AO是平面的斜线,BO是AO在平面中的射影,根据三垂线定理(或逆定理)即得AOl,BOl,即AOB是-l-的平面角。OADD1C1B1A1CB例题3:已知正方体ABCD-A1B1C1D1中,求二面角B-AC-B1的大小。例题4:已知正方体ABCD-A1B1C1D1中,求平面ACD1与平面BDC1所成的二面角。HGFOEADD1C1B1A1CB三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。方法是过所求二面角的棱上一点,作棱的垂面,与两个平面相交所得
4、两条交线的所成角即是二面角的平面角。lBAO如图在二面角-l-的棱上任取一点O,过O作平面l,=AO,=BO,得AOB是平面角,l,lAO,lBO。AOB是二面角的平面角。例题5:已知正方体ABCD-A1B1C1D1中,求二面角B-A1C-D的大小。HADD1C1B1A1CBlGEFHADD1C1B1A1CB例题6:已知正方体ABCD-A1B1C1D1中,E、F分别是BB1、DD1的中点,求平面BC1D与平面EC1F所成的二面角。四、 判定垂面法OADD1C1B1A1CB此法根据平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面垂直,反之,若能判定两个平面垂直,则这两个平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二面角 求法 专题
限制150内