人教版七年级下数学知识点归纳总结作者:张楚婈(3页).doc
《人教版七年级下数学知识点归纳总结作者:张楚婈(3页).doc》由会员分享,可在线阅读,更多相关《人教版七年级下数学知识点归纳总结作者:张楚婈(3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第五章 相交线与平行线平面内,点与直线之间的位置关系分为两种: 点在线上 点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种: 相交 平行一、相交线1、两条直线相交,有且只有一个交点。 (反之,若两条直线只有一个交点,则这两条直线相交。) 两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。 邻补角互补。 对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。 对顶角相等。2、垂直是两直线相交的特殊情况。 注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。垂足:两条互相垂直的直线的交点叫垂足。 表示为ab,读作a垂直于b。过一
2、点有且只有一条直线与已知直线垂直。(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫 垂线段。垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。(或说 直角三角形中,斜边大于直角边。)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。 4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。 注意:同位角F型,内错角Z
3、型,同旁内角U型。二、平行线同一平面内,两条直线若没有公共点(即交点),那么这两条直线平行。 注:平行线永不相交。1、平行公理:过直线外一点,有且只有一条直线与已知直线平行。 (注:这一点是在直线外)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 (或叫平行线的传递性)2、平行线的画法:借助三角板和直尺。(此基本作图方法一定要掌握,多练习。)3、平行线的判定: 同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行。同一平面内,垂直于同一直线的两条直线互相平行。4、平行线的性质: 两直线平行,同位角相等; 两直线平行,内错角相等; 两直线平行,同旁内角互
4、补。 一个结论:平行线间的距离处处相等。 5、命题判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果那么”的形式。例如:“明天可能下雨。”这句语句_命题,而“今天很热,明天可能下雨。”这句语句_命题。(填“是”或“不是”) 命题分为真命题 与 假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。 逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。例如:“对顶角相等”是个真命题
5、,但其逆命题“相等的角是对顶角”却是个假命题。三、平移1、 概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。 特征: 发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等); 对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。第六章 实数 1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作 (a=0)特性:一个正数有两个平方根,它们互为相反数,
6、零的平方根还是零。负数没有平方根。正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。 开平方:求一个数的平方根的运算,叫做开平方。2.立方根:如果一个数的立方等于a,则称这个数为a立方根 。数a的立方根用表示。任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。第七章 平面直角坐标系 一、坐标1、数轴 规定了原点、正方向、单位长度的直线叫数轴。 数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。 数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个数与之对
7、应。2、平面直角坐标系 由互相垂直、且原点重合的两条数轴组成。 横向(水平)方向的为横轴(x轴),纵向(竖直)方向的为纵轴(y轴), 平面直角坐标系上的任一点,都可用一对有序实数对来表示位置,这对有序实数对就叫这点的坐标。(即是用有顺序的两个数来表示,注:x在前,y在后,不能随意更改) 坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。二、象限及坐标平面内点的特点 1、四个象限 注:坐标轴(x轴、y轴)上的点不属于任何一个象限。 2、坐标平面内点的位置特点 、坐标原点的坐标为(0,0);、第一象限内的点,x、y同号,均为正; 、第二象限内的点,x、y异号,x为
8、负,y为正;、第三象限内的点,x、y同号,均为负; 、第四象限内的点,x、y异号,x为正,y为负;、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)3、点到坐标轴的距离 坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。注: 、已知点的坐标求距离,只有一个结果,但已知距离求坐标,则因为点的坐标有正有负,可能有多个解的情况,应注意不要丢解。 例:点P(x,y)到x轴的距离是3,到y轴的距离是7,求点P的坐标为
9、_。4、平行于坐标轴的直线的表示、平行于横轴(x轴)的直线上的任意一点,其横坐标不同,纵坐标均相等; 平行于纵轴(y轴)的直线上的任意一点,其纵坐标不同,横坐标均相等;。5、平移、点的平移 “左减右加” “下减上加” 、图形的平移 图形是由无数个点组成的,所以,图形的平移实质上就是点的平移。关键是把图形的各个顶点按要求横向或纵向平移,描出平移后的对应顶点,再连接全部对应顶点即可。 第八章 二元一次方程组 一、二元一次方程组1、概念:二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。 二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七年级下数学知识点归纳总结 作者:张楚婈3页 人教版七 年级 数学 知识点 归纳 总结 作者 张楚婈
限制150内