一元二次方程的四种解法(8页).doc
《一元二次方程的四种解法(8页).doc》由会员分享,可在线阅读,更多相关《一元二次方程的四种解法(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 龙文教育个性化辅导教案提纲 教师: 陈燕玲 学生: 年级 九 日期: 星期: 时段: 课 题一元二次方程的概念及解法学情分析教学目标与考点分析1. 掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。2 能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。教学重点难点教学重点: 掌握常用四种一元二次方程的解法。教学难点: 灵活选用适当方法解一元二次方程教学方法讲解法 合作探究法教学过程一、一元二次方程的概念: 问题(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正
2、方形边长为x,那么原来长方形长是_,宽是_,根据题意,得:_ 整理,得:_ 归纳: (1)只含一个未知数x;(2)最高次数是2次的;(3)整式方程 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式 一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写
3、出其中的二次项系数、一次项系数及常数项 注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 例2将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项 练习:判断下列方程是否为一元二次方程? (1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0例3求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程 练习: 一、选择题 1在下列方程中,一元二次方程的个数是( ) 3x2+7=0 a
4、x2+bx+c=0 (x-2)(x+5)=x2-1 3x2-=0 A1个 B2个 C3个 D4个 2方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ) A2,3,-6 B2,-3,18 C2,-3,6 D2,3,63px2-3x+p2-q=0是关于x的一元二次方程,则( ) Ap=1 Bp0 Cp0 Dp为任意实数 二、填空题 1方程3x2-3=2x+1的二次项系数为_,一次项系数为_,常数项为_ 2一元二次方程的一般形式是_ 3关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_ 三、综合提高题 1、a满足什么条件时,关于x的方程a(x2+x)
5、=x-(x+1)是一元二次方程? 2、关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么? 3、方程(2a4)x22bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程? 4、当m为何值时,方程(m+1)x4m-4+27mx+5=0是关于的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根(只含有一个未知数的方程的解,又叫方程的根) 例1下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4 例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a0)的一个根,求代
6、数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值例3你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0三、一元二次方程的解法(一)、直接开平方法 问题1填空(1)x2-8x+_=(x-_)2;(2)9x2+12x+_=(3x+_)2;(3)x2+px+_=(x+_)2问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法? 方程x2=9,根据平方根的意义,直接开平方得x=3,如果x换元
7、为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢? 例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1 例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率 解一元二次方程的共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程这种思想称为“降次转化思想” 由应用直接开平方法解形如x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的若p0则方程无解 练习:一、选择题 1若x2-4x+p=(x+q)2,那么p、q的值分别是(
8、 ) Ap=4,q=2 Bp=4,q=-2 Cp=-4,q=2 Dp=-4,q=-2 2方程3x2+9=0的根为( ) A3 B-3 C3 D无实数根 二、填空题 1若8x2-16=0,则x的值是_ 2如果方程2(x-3)2=72,那么,这个一元二次方程的两根是_ 3如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_ 三、综合提高题 1解关于x的方程(x+m)2=n (二)、配方法 1、解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7 上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 解法
限制150内