人教版八年级数学上册知识点归纳(8页).doc
《人教版八年级数学上册知识点归纳(8页).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学上册知识点归纳(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第十一章 全等三角形11.1全等三角形(1) 形状、大小相同的图形能够完全重合;(2) 全等形:能够完全重合的两个图形叫做全等形;(3) 全等三角形:能够完全重合的两个三角形叫做全等三角形;(4) 平移、翻折、旋转前后的图形全等;(5) 对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6) 对应角:全等三角形中相互重合的角叫做对应角;(7) 对应边:全等三角形中相互重合的边叫做对应边;(8) 全等表示方法:用“”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字 母写在对应的位置上)(9) 全等三角形的性质:全等三角形的对应边相等; 全等三角形的对应角相等;11.2三角形
2、全等的判定(1)若满足一个条件或两个条件均不能保证两个三角形一定全等;(2)三角形全等的判定:三边对应相等的两个三角形全等;(“边边边”或“SS”S) 两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”) 两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”) 两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”) 斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”)(3) 证明三角形全等:判断两个三角形全等的推理过程;(4) 经常利用证明三角形全等来证明三角形的边或角相等;(5) 三角形的稳定性:三角形的三边确定了,则这个
3、三角形的形状、大小就确定了;(用“SSS”解释)11.3角的平分线的性质(1) 角的平分线的作法:课本第19页;(2) 角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3) 证明一个几何中的命题,一般步骤: 明确命题中的已知和求证; 根据题意,画出图形,并用数学符号表示已知和求证; 经过分析,找出由已知推出求证的途径,写出证明过程;(4) 性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5) 三角形的三条角平分线相交于一点,该点为内心;第十二章 轴对称12.1轴对称(1) 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合
4、,那么就称这个图形是轴 对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2) 两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这 两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;(3) 轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分 能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够 重合;(4) 轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于 这条轴对称;把成轴对称的两个图形看成一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 上册 知识点 归纳
限制150内