《九下数学,中考第二轮专题复习教案(24页).doc》由会员分享,可在线阅读,更多相关《九下数学,中考第二轮专题复习教案(24页).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习一 化归思想备课时间复备时间组长签字课 型新授课课 时1课时教学目标知识目标数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力能力目标抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在情感目标在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识教学重点初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等本专题专门复习化归思想所谓化归思想就是化未知
2、为已知、化繁为简、化难为易教学难点如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等教学用具板书设计 教 学 流 程二 次 复 备典型例题剖析【例1】如图311,反比例函数y=与一次函数y=x+2的图象交于A、B两点 (1)求 A、B两点的坐标; (2)求AOB的面积 解:解方程组 得 所以A、B两点的坐标分别为A(2,4)B(4,2(2)因为直线y=x+2与y轴交点D坐标是(0, 2), 所以 所以 点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第
3、二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标【例2】解方程: 解:令y= x1,则2 y25 y +2=0 所以y1=2或y2=,即x12或x1= 所以x3或x= 故原方程的解为x3或x= 点拨:很显然,此为解关于x1的一元二次方程如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未知项的都是含有(x1)所以可将设为y,这样原方程就可以利用换元法转化为含有y的一元二次方程,问题就简单化了【例3】如图 312,梯形 ABCD中,ADBC,AB=CD,对角线AC、BD相交于O点,且ACBD,AD=3,BC=5,求AC的长 解:过 D作DEAC交BC的延长线于
4、E,则得AD=CE、AC=DE所以BE=BC+CE=8 因为 ACBD,所以BDDE 因为 AB=CD, 所以ACBD所以GD=DE 在RtBDE中,BD2DE2=BE2 所以BDBE=4,即AC=4. 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决【例4】已知ABC的三边为a,b,c,且,试判断ABC的形状 解:因为,所以,即: 所以a=b,a=c, b=c 所以ABC为等边三角形 点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题【例5】ABC中,BC,AC,ABc若,如图l,根据勾股定理,则。若ABC不是直角三角形,
5、如图2和图3,请你类比勾股定理,试猜想与c2的关系,并证明你的结论 证明:过B作BDAC,交AC的延长线于D。设CD为,则有 根据勾股定理,得即。 ,。点拨:勾股定理是我们非常熟悉的几何知识,对于直角三角形三边具有:的关系,那么锐角三角形、钝角三角形的三边又是怎样的关系呢?我们可以通过作高这条辅助线,将一般三角形转化为直角三角形来确定三边的关系.教学反思授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习二 分类讨论备课时间复备时间组长签字课 型新授课课 时1课时教学目标知识目标在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查这种分类思考的方法是一种重要的数学
6、思想方法,同时也是一种解题策略能力目标分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解情感目标提高分析问题、解决问题的能力是十分重要的正确的分类必须是周全的,既不重复、也不遗漏教学重点分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行教学难点分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行教学用具板书设计 教 学 流 程二 次 复 备典型例题剖析【例1】如图321,一次函数与反比例函数的图象分别是直线AB和双曲线直线AB与双
7、曲线的一个交点为点C,CDx轴于点D,OD2OB4OA4求一次函数和反比例函数的解析式解:由已知OD2OB4OA4,得A(0,1),B(2,0),D(4,0)设一次函数解析式为ykxb 点A,B在一次函数图象上, 即则一次函数解析式是 点C在一次函数图象上,当时,即C(4,1) 设反比例函数解析式为 点C在反比例函数图象上,则,m4故反比例函数解析式是:点拨:解决本题的关键是确定A、B、C、D的坐标。【例2】如图322所示,如图,在平面直角坐标系中,点O1的坐标为(4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60角。以点O2(13,5)为圆心的圆
8、与x轴相切于点D. (1)求直线l的解析式;(2)将O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当O2第一次与O2相切时,直线l也恰好与O2第一次相切,求直线l平移的速度;(3)将O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为O2的直径,过点A作O2的切线,切O2于另一点F,连结A O2、FG,那么FGA O2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。解(1)直线l经过点A(12,0),与y轴交于点(0,),设解析式为ykxb,则b,k,所以直线l的解析式为. (2)可求得O2第一次与O1相切时,向左平移了5秒(5个单位)如图所示
9、。在5秒内直线l平移的距离计算:81230,所以直线l平移的速度为每秒(6)个单位。(3)提示:证明RtEFGRtAE O2于是可得:所以FGA O2,即其值不变。点拨:因为O2不断移动的同时,直线l也在进行着移动,而圆与圆的位置关系有:相离(外离,内含),相交、相切(外切、内切,直线和圆的位置关系有:相交、相切、相离,所以这样以来,我们在分析过程中不能忽略所有的可能情况【例3】如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N(1)求过A、C两点直线的解析式;(2)
10、当点N在半圆M内时,求a的取值范围;(3)过点A作M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标解:(1)过点A、c直线的解析式为y=x(2)抛物线y=ax25x+4a顶点N的坐标为(,a)由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,a 2,解这个不等式,得a(3)设EF=x,则CF=x,BF=2x在RtABF中,由勾股定理得x= ,BF= 【例4】在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得AOP成为等腰三角形.在给出的坐标系中把所有这样的点P都找出
11、来,画上实心点,并在旁边标上P1,P2,Pk,(有k个就标到PK为止,不必写出画法) 解:以A为圆心,OA为半径作圆交坐标轴得和;以O为圆心,OA为半径作圆交坐标轴得,和;作OA的垂直平分线交坐标轴得和。点拨:应分三种情况:OA=OP时;OP=P时;OA=PA时,再找出这三种情况中所有符合条件的P点教学反思授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习三 数形结合备课时间复备时间组长签字课 型新授课课 时1课时教学目标知识目标数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化
12、,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法能力目标所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来情感目标并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法教学重点数形结合教学难点数形结合教学用具板书设计 教 学 流 程二 次 复 备典型例题剖析【例1】某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图331已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)果你是推
13、销员,应如何选择付费方案? 解:(1)y1=20x,y2=10x+300 (2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元 (3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图332,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情
14、况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析解:(1)2月份每千克销售价是35元;7对月份每千克销售价是05元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同 点拨:可以运用二次函数的性质:增减性、对称性最大(小)值等,得出多个结论【例3】某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3
15、l司所示的条形统计图:请写出从条形统计图中获得的一条信息;请根据条形统计图中的数据补全如图333所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?请你根据上述数据,对该报社提出一条合理的建议。 解:参加调查的人数为5000人; 说明:只要符合题意,均得满分 如图335所示: 条形统计图能清楚地表示出喜欢各版面的读者人数扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比 说明:第二版、第三版所对应的两个扇形中非公共边不在一条直线上的得0分 如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些 说明:只要意义说到、表达基本正确即可得满分
16、点拨。统计分布图在中考中出现的越来越多,而统计图又分为:条形。扇形、折线,从统计图中获得的信息是我们必须掌握的教学反思授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习四 怎样解选择题备课时间复备时间组长签字课 型新授课课 时1课时教学目标知识目标选择题是中考试题中必有的固定题型,它具有考查面宽、解法灵活、评分客观等特点选择题一般由题干(题没)和选择支(选项)组成如果题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、判断、推理用除干扰支,得出正确选项的过程.能力目标解选择
17、题的过程就是通过分析、判断、推理用除干扰支,得出正确选项的过程.情感目标解选择题的过程就是通过分析、判断、推理用除干扰支,得出正确选项的过程.教学重点解选择题的技巧。教学难点解选择题的技巧。教学用具板书设计 教 学 流 程二 次 复 备选择题的解法一般有七种:1直接求解对照法:直接根据选择题的题设,通过计算、推理、判断得出正确选项2排除法:有些选择题可以根据题设条件和有关知识,从4个答案中,排除3个答案,根据答案的唯一性,从而确定正确的答案,这种方法也称为剔除法或淘汰法或筛选法3特殊值法:根据命题条件选择题中所研究的量可以在某个范围内任意取值,这时可以取满足条件的一个或若干特殊值代人进行检验,
18、从而得出正确答案4作图法:有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的直观性从中找出正确答案这种应用“数形结合”来解数学选择题的方法,我们称之为“作图法”5验证法:直接将各选择支中的结论代人题设条件进行检验,从而选出符合题意的答案6定义法:运用相关的定义、概念、定理、公理等内容,作出正确选择的一种方法7综合法:为了对选择题迅速、正确地作出判断,有时需要综合运用前面介绍的几种方法 解选择题的原则是既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的于抗,须注意以下几点:(1)要认真审题;(2)要大胆猜想;(3)要小心验
19、证;(4)先易后难,先简后繁典型例题剖析【例1】若半径为3,5的两个圆相切,则它们的圆心距为( ) A2 B8 C2或8 D1或4 解:C 点拨:本题可采用“直接求解对照法”两圆相切分为内切和外切,当两圆内切时,它们的圆心距为:53=2,当两圆外切时,它们的圆心距为:3+5=8【例2】如图341所示,对a、b、c三种物体的重量判断正确的是( ) Aac Bab Cac Dbc 解:C 点拨:根据图形可知:2a=3b,2b=3c,所以ab,bc因此ac,所以选择C【例3】已知一次函数y=kxk,若y随x的增大而减小,则该函数的图象经过( ) A第一、二、三象限; B第一、二、四象限 C第二、三、
20、四象限; D第一、三、四象限 解:B 点拨:本题可采用“定义法”因为y随x的增大而减小,所以k0因此必过第二、四象限,而k0所以图象与y轴相交在正半轴上,所以图象过第一、二、四象限.【例4】下列函数中,自变量x的取值范围是x2的是( ) 解:B 点拨:本题可采用“定义法”分别计算每个自变量x的取值范围,Ax2; Bx2;C2x2; Dx2通过比较选择B【例5】某闭合电路中,电源电压为定值,电流I(A)与电阻R()成反比例,图342表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )A、 B、; C、 D、解:本可用定义法,选A.【例6】在ABC中,C=90
21、,如果tanA=,那么sinB的值等于( ) 解:B 点拨:本题可用“特殊值”法,在ABC中,C=90,故选B【例7】在中,最简二次根式的个数为( ) A1个 B2个 C3个D4个 解: B 点拨:对照最简二次根式应满足的两个条件:被开方数的因数是整数,因式是整式;被开方数中不含能开方的因数或因式,运用“定义法”可知,此题只有与是最简二次根式,故选B教学反思授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习五 新情境应用问题备课时间复备时间组长签字课 型新授课课 时1课时教学目标知识目标以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能
22、力、阅读理解能力。能力目标问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析情感目标解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心.教学重点(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力教学难点(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力教学用具板书设计 教
23、学 流 程二 次 复 备典型例题剖析【例1】如图(8),在某海滨城市O附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70方向200千米的海面P处,并以20千米/ 时的速度向西偏北25的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 千米;又台风中心移动t小时时,受台风侵袭的圆形区域半径增大到 千米.(2)当台风中心移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据,)解:(1)100;(2); 作于点H,可算得(千米),设经过t小时时,台风中
24、心从P移动到H,则,算得(小时),此时,受台风侵袭地区的圆的半径为:(千米)141(千米)城市O不会受到侵袭。点拨:对于此类问题常常要构造直角三角形利用三角函数知识来解决,也可借助于方程 【例2】如图215所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里外的A点有一涉嫌走私船只正以 24海里时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:需要几小时才能追上(点B为追上时的位置)确定巡逻艇的追赶方向(精确到01)解:设需要t小时才能追上,则A B=24 t,OB=26t (l)在Rt
25、AOB中,OB2= OA2+ A B2, 即(26t)2=102 +(24 t)2 解得t=l,t=1不合题意,舍去,t=l, 即需要1小时才能追上 (2)在RtAOB中,因为sinAOB= =0.9231 ,所以AOB6 74, 即巡逻艇的追赶方向为北偏东674 点拨:几何型应用题是近几年中考热点,解此类问题的关键是准确读图 【例3】某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算,本次购买机器所耗资金不能超过34万元。按该公司要求可以有几种购买方案?若该公司购进的6台机器的日生产能力不能低于38
26、0个,那么为了节约资金应选择哪种方案? 解:(1)设购买甲种机器x台,则购买乙种机器(6x)台。由题意,得,解这个不等式,得,即x可以取0、1、2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为175532万元;,新购买机器日生产量为1100560400个;按方案三购买机器,所耗资金为274534万元;新购买机器日生产量为2100460440个。因此,选择方案二既
27、能达到生产能力不低于380个的要求,又比方案三节约2万元资金,故应选择方案二。【例4】某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?解:根据题意,可有三种购买方案;方案一:只买大包装,则需买包数为:;由于不拆包零卖所以需买10包所付费用为3010=300(元) 方案二:只买小包装则需买包数为:所以需买1 6包,所付费用为1 620320(元) 方案三:既买大包装又买小包装,并设买大包装 包小包装包所需费用为W元。则
28、,且为正整数,9时,290(元)购买9包大包装瓷砖和l包小包装瓷砖时,所付费用最少为290元。答:购买9包大包装瓷砖和l包小包装瓷砖时,所付费用最少为290元。点拨:数学知识来源于生活,服务于生活,对于实际问题,要富有创新精神和初中能力,借助于方程或不等式来求解。 【例5】如图2-2-4所示,是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在有O、A两个观测点,分别测得目标点火炬C的仰角分别为,OA=2米,tan=, tan=,位于点O正上方2 米处的点D的发身装置可以向目标C同身一个火球点燃火炬,该火球运行地轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米
29、(图中E点)。求火球运行轨迹的抛物线对应的函数解析式;说明按中轨迹运行的火球能否点燃目标C? 解:由题意可知:抛物线顶点坐标为(12,20),D点的坐标为(0,2),所以抛物线解析式为即 点D在抛物线上,所以2= 抛物线解析式为: 过点C作CF丄x轴于F点,设CF=b,AF=a,则 解得: 则点C的坐标为(20,12),当x=20时,函数值y= 所以能点燃目标C 点拨:本题是三角函数和抛物线的综合应用题,解本题的关键是建立数学模型,即将实际问题转化为数学问题来解决教学反思授课时间第 周 年 月 日 星期序 号主备人复备人课 题第二轮复习六 探索性问题备课时间复备时间组长签字课 型新授课课 时1
30、课时教学目标知识目标探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;能力目标探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目情感目标探索型问题具有较强的综合性,因而解决此类问题用到了所学过的整个初中数学知识教学重点经常用到的知识是:一元一次方程、平面直角坐标系、一次函数与二次函
31、数解析式的求法(图象及其性质)、直角三角形的性质、四边形(特殊)的性质、相似三角形、解直角三角形等其中用几何图形的某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题的主要手段和途径教学难点因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力教学用具板书设计 教 学 流 程二 次 复 备典型例题剖析【例1】如图261,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在轴上,CF交y轴于点B(0,2),且其面积为8(1)求此抛物线的解析式;(2)如图262,若P点为抛物线上不同于A的一点,连结PB并延
32、长交抛物线于点Q,过点P、Q分别作轴的垂线,垂足分别为S、R求证:PBPS;判断SBR的形状;试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由解:方法一:B点坐标为(0,2),OB2,矩形CDEF面积为8,CF=4.C点坐标为(一2,2)F点坐标为(2,2)。设抛物线的解析式为其过三点A(0,1),C(-22),F(2,2)。得 解得此抛物线的解析式为 方法二:B点坐标为(0,2),OB2,矩形CDEF面积为8, CF=4.C点坐标为(一2,2)。 根据题意可设抛物线解析式为。其过点A(0,1)和
33、C(-22) 解得此抛物线解析式为(2)解:过点B作BN,垂足为NP点在抛物线y=+l上可设P点坐标为PS,OBNS2,BN。PN=PSNS= 在RtPNB中PB2PBPS 根据同理可知BQQR。,又 ,同理SBPB . SBR为直角三角形 方法一:设,由知PSPBb,。假设存在点M且MS,别MR 。若使PSMMRQ,则有。即。 SR2M为SR的中点. 若使PSMQRM,则有。M点即为原点O。综上所述,当点M为SR的中点时PSMMRQ;当点M为原点时,PSMMRQ 方法二:若以P、S、M为顶点的三角形与以Q、M、R为顶点三角形相似,有PSMMRQ和PSMQRM两种情况。 当PSMMRQ时SPM
34、RMQ,SMPRQM 由直角三角形两锐角互余性质知PMS+QMR90。 取PQ中点为N连结MN则MNPQ= MN为直角梯形SRQP的中位线,点M为SR的中点 当PSMQRM时,。又,即M点与O点重合。点M为原点O。综上所述,当点M为SR的中点时,PSMMRQ;当点M为原点时,PSMQRM。 点拨:通过对图形的观察可以看出C、F是一对关于y轴的对称点,所以(1)的关键是求出其中一个点的坐标就可以应用三点式或 y=ax2+c型即可而对于点 P既然在抛物线上,所以就可以得到它的坐标为(a,a2+1)这样再过点B作BNPS得出的几何图形求出PB 、PS的大小最后一问的关键是要找出PSM与MRQ相似的条
35、件【例2】探究规律:如图264所示,已知:直线mn,A、B为直线n上两点,C、P为直线m上两点 (1)请写出图264中,面积相等的各对三角形; (2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_与ABC的面积相等理由是:_. 解决问题:如图 265所示,五边形 ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图266所示的形状,但承包土地与开垦荒地的分界小路(266中折线CDE)还保留着;张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多请你用有关的几何知识,按张大爷
36、的要求设计出修路方案(不计分界小路与直路的占地面积) (1)写出设计方案并画出相应的图形; (2)说明方案设计理由解:探究规律:(l)ABC和ABP,AOC和 BOP、CPA和CPB (2)ABP;因为平行线间的距离相等,所以无论点P在m上移动到任何位置,总有ABP与ABC同底等高,因此,它们的面积总相等 解决问题:画法如图267所示 连接EC,过点D作DFEC,交CM于点F,连接EF,EF即为所求直路位置 设EF交CD于点H,由上面得到的结论可知: SECF=SECD,SHCF=SEDH,所以S五边形ABCDE=S五边形ABCFE,S五边形EDCMN=S四边形EFMN 点拨:本题是探索规律题
37、,因此在做题时要从前边问题中总结出规律,后边的问题要用前边的结论去一做,所以要连接EC,过D作DFEC,再运用同底等高的三角形的面积相等【例3】如图268所示,已知抛物线的顶点为M(2,4),且过点A(1,5),连结AM交x轴于点B求这条抛物线的解析式;求点 B的坐标;设点P(x,y)是抛物线在x轴下方、顶点 M左方一段上的动点,连结 PO,以P为顶点、PQ为腰的等腰三角形的另一顶点Q在x轴上,过Q作x轴的垂线交直线AM于点R,连结PR设面 PQR的面积为S求S与x之间的函数解析式;在上述动点P(x,y)中,是否存在使SPQR=2的点?若存在,求点P的坐标;若不存在,说明理由解:(1)因为抛物
38、线的顶点为M(2,4)所以可设抛物线的解析式为y=(x2)2 4因为这条抛物线过点A(1,5)所以5=a(12)24解得a=1所以所求抛物线的解析式为y=(x2)2 4 (2)设直线AM的解析式为y=kx+ b因为A(1,5), M(2,4)所以,解得 k=3,b=2所以直线AM的解析式为 y=3x2当y=0时,得x= ,即AM与x轴的交点B(,0)(3)显然,抛物线y=x24x过原点(0,0当动点P(x,y)使POQ是以P为顶点、PO为腰且另一顶点Q在x轴上的等腰三角形时,由对称性有点 Q(2x,0)因为动点P在x轴下方、顶点M左方,所以0x2因为当点Q与B(,0)重合时,PQR不存在,所以
39、x,所以动点P(x,y)应满足条件为0x2且x,因为QR与x轴垂直且与直线AM交于点R,所以R点的坐标为(2x,6x+2) 如图269所示,作P HOR于H,则PH= 而S=PQR的面积=QRP H= 下面分两种情形讨论:当点Q在点B左方时,即0x时,当R在 x轴上方,所以6x20所以S=(6x2)x=3x2+x;当点Q在点B右方时,即x2时点R在x轴下方,所以6x20所以S=(6x2)x=3x2x; 即S与x之间的函数解析式可表示为(4)当S=2时,应有3x2+x =2,即3x2 x+ 2=0,显然0,此方程无解或有3x2x =2,即3x2 x2=0,解得x1 =1,x2当x=l时,y= x24x=3,即抛物线上的点P(1,3)可使SPQR=2;当x=0时,不符合条件,应舍去所以存在动点P,使SPQR=2,此时P点坐标为(1,3)点拨:此题是一道综合性较强的探究性问题,对于第(1)问我们可以采用顶点式求得此抛物线,而(2)中的点B是直线 AM与x轴的交点,所以只要利用待定系数法就可以求出直线AM,从而得出与x轴的交点B(3)问中注意的是Q点所处位置的不同得出的S与x之间的关系也随之发生变化(4)可以先假设存在从而得出结论教学反思-第 24 页-
限制150内