《乙酸乙酯反应器设计(32页).doc》由会员分享,可在线阅读,更多相关《乙酸乙酯反应器设计(32页).doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 青 海 大 学 化工过程设备设计 设计说明书 设计题目:年产2.76103t乙酸乙酯反应器设计 班 级:2013级化工2班 姓 名:邬天贵 学 号:1320103130 前言乙酸乙酯,又称醋酸乙酯,分子式C4H8O2。它是一种无色透明易挥发的可燃性液体,呈强烈清凉菠萝香气和葡萄酒香味。乙酸乙酯能很好的溶于乙醇、氯仿、乙醚、甘油、丙二醇和大多数非挥发性油等有机溶剂中,稍溶于水,25时,1ml乙酸乙酯可溶于10ml水中,而且在碱性溶液中易分解成乙酸和乙醇。水能使其缓慢分解而呈酸性。乙酸乙酯与水和乙醇都能形成二元共沸混合物,与水形成的共沸物沸点为70.4,其中含水量为6.1%(质量分数)。与乙醇
2、形成的共沸物沸点为71.8。还与7.8%的水和9.0%的乙醇形成三元共沸物,其沸点为70.2。乙酸乙酯应用最广泛的脂肪酸酯之一,具有优良的溶解性能,是一种较好的工业溶剂,已经被广泛应用于醋酸纤维、乙基纤维、氯化橡胶、乙醛纤维树脂、合成橡胶等的生产,也可用于生产复印机用液体硝基纤维墨水,在纺织工业中用作清洗剂,在食品工业中用作特殊改性酒精的香味萃取剂,在香料工业中是最重要的香味添加剂,可作为调香剂的组分,乙酸乙酯也可用作黏合剂的溶剂,油漆的稀释剂以及作为制造药物、染料等的原料。目前,国内外市场需求不断增加。在人类不断注重环保的今天,在涂料油墨生产中采用高档溶剂是大势所趋。作为高档溶剂,乙酸乙酯在
3、国内外的应用在持续稳定的增长,在建筑、汽车等行业的迅速发展,也会带动对乙酸乙酯类溶剂的需求。工业生产技术目前全球乙酸乙酯工业生产方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法等。传统的醋酸酯化法工艺在国外被逐步淘汰,而大规模生产装置主要采用后三种方法,其中新建装置多采用乙烯加成法。本设计采用醋酸酯化法。醋酸酯化法在硫酸催化剂作用下,醋酸和乙醇直接酯化生成乙酸乙酯。该工艺方法技术成熟,投资少,操作简单,但缺点是生产成本高、硫酸对设备腐蚀性强、副反应多、产品处理困难、环境污染严重。目前我国大多数企业仍采用醋酸酯化法生产乙酸乙酯。目录一、工艺设计1 1.1原料液的处理量1 1.2原料液的起
4、始浓度1 1.3反应时间与反应体积1二、物料衡算2三、热量衡算3 3.1标准反应热3 3.2热量衡算3 3.3换热计算5四、反应釜釜体设计5 4.1反应器的直径与高度5 4.2筒体的壁厚7 4.3反应釜封头厚度8五、反应釜夹套设计8 5.1夹套DN、PN的确定8 5.2夹套筒体的壁厚9 5.3夹套筒体的高度10 5.4夹套的封头10 5.5换热面积校核10六、反应釜釜体及夹套压力试验10 6.1釜体的水压试验11 6.2夹套的液压试验11七、搅拌器12 7.1搅拌桨的尺寸与安装位置13 7.2搅拌功率的计算14 7.3搅拌轴直径设计15八、反应釜附件的选型与尺寸设计17 8.1原料液进料管17
5、 8.2人孔与手孔17 8.3支座17 8.4传动装置17 8.5机架18九、 设计结果一览表18十、 设计心得20 参考文献21一、工艺设计1.1原料液的处理量 根据乙酸乙酯的产量可计算出每小时乙酸用量为 Q=11.285kmol/h由于原料液的组分质量比为1:2:1.35所以单位时间处理量为 Q0=2.888m3/h1.2原料液的起始浓度CA0=3.908mol/L有质量比可得乙醇和水的起始浓度 CB0=10.195mol/L CS0=17.586mol/L1.3反应时间与反应体积将速率方程转换成转化率的函数 CA=CA0(1-XA) CB=CB0-CA0XA CR=CA0XA CS=CS
6、0+CA0XA RA=k1(a+bXA+cXA2)CA02=k1XA2-(1+)XA+CA02 由上式可得 a=2.609 b=-(1+)=-5.15 c=0.658所以:=4.434则:t=143.8min 所以:VR=Q0(t+t0)=9.328m3实际体积Vt=15.547m3 (对于沸腾或鼓泡的液体物料,f可取0.40.6 化学反应工程)二、物料衡算乙酸每小时进料量为11.285kmol/h,根据乙酸的转化率和反应物的初始质量比计算出各物料的进料和出料量。进料:乙醇:Q0=29.439kmol/h乙酸乙酯:Q0=0kmol/h水:Q0=50.783kmol/h出料:乙酸:Q=11.28
7、5-11.2850.386=6.929kmol/h乙醇:Q=29.439-11.2850.386=25.083kmol/h乙酸乙酯:Q=11.2850.386=4.356kmol/h水:Q=50.783+11.2850.386=55.139kmol/h列表如下: 物料 进料kmol/h 出料kmol/h 乙酸 11.285 6.929 乙醇 29.439 25.083 乙酸乙酯 0 4.356 水 50.783 55.139三、热量衡算3.1标准反应热以第一基准为计算基准反应方程式:CH3COOH+C2H5OHCH3COOC2H5+H2O H=+输出niHi-输入niHi各物质的Hf0及HV(
8、蒸发焓)查得如下:(由化工工艺设计手册第四版上册查得) 乙酸:Hf0=-487.0KJ/mol 乙醇:Hf0=-277.6KJ/mol HV=39.33KJ/mol乙酸乙酯:Hf0=-463.3KJ/mol HV=32.24KJ/mol水:Hf0=-285.9KJ/mol HV=40.63KJ/molHr0=输出iHf0-输入iHf0 =-(463.3+285.9)+(487.0+277.6)=15.4KJ/mol3.2热量衡算从化工工艺设计手册第四版上册查出各组分在各温度段的CP值,经拟合呈线性关系,所以可用内插法求得各物质在反应温度段下的平均CP值。拟合结果如下:乙酸:y=0.1015X+
9、131.25 k2=0.9961 得CP=137.803J/(molk)乙醇:y液=0.4845X+98.9 k2=0.9942 得CP液=124.678J/(molk) y气=0.1558X+61.593 k2=0.9998 得CP气=75.390J/(molk)乙酸乙酯:y液=0.225X+164.8 k2=0.9681 得CP液=177.038J/(molk) y气=0.272X+104.12 k2=0.9995 得CP气=128.028J/(molk)水:y=0.0002X2-0.0136X+75.453 k2=0.9968 得CP=75.672J/(molk)因为进料温度为25,所以
10、输入niHi=0,将上述CP值带入计算各组分输出焓值。 乙酸:H1=n液dt=7.161104KJ/h 乙醇:H2=n液dt+HV+气dt=1.194106KJ/h 乙酸乙酯:H3=n液dt+HV+气dt=1.934105KJ/h 水:H4=n(液dt+HV)=2.553106KJ/h 输出niHi=4.012106KJ/hH总=4.35615.4103+4.012106-0=4.079106KJ/hH总0,所以外界应向系统提供能量。3.3换热计算换热采用夹套加热,设夹套内的过热水蒸气由130降到110。温差为20,忽略热损失,则计算水蒸气的用量如下:水蒸气的比热容CP0:Cp0=a+(b10
11、-2)T+(c10-5)T2+(d10-9)T3其中a=7.7,b=0.0459,c=0.252,d=-0.859 (由化工计算查得)T1=130, T2=110, T=120计算得Cp0=7.7+0.180+0.389-0.052=8.217cal/(molk)由Q=m0Cp0(T1-T2)得m0=1.068105kg/h四、反应釜釜体设计4.1反应器的直径和高度在已知搅拌器的操作容积后,首先要选择罐体适宜的高径比(H/Di)以确定罐体的直径和高度。选择罐体高径比主要考虑以下两方面因素:1、 高径比对搅拌功率的影响:在转速不变的情况下,PDi3,其中搅拌功率P随釜体直径Di的增大,而增加很多
12、,减小高径比只能无畏的消耗一些搅拌功率。因此一般情况下,高径比应选择大一些。2、 高径比对传热的影响:当容积一定时,H/Di越大,越有利于传热。 高径比的确定通常采用经验值 种类 罐体物料类型H/Di 一般搅拌釜液固或液液相物料 气液相物料 11.3 12 发酵罐类气液相物料 1.72.5假设高径比=1.3 先忽略罐底容积 VtDi2HDi315.547=Di31.3 Di=2.48m取标准Di=2.5m=2500mm 标准椭球形封头设计参数 由化工制图查得 公称直径mm总深度mm直边高度mm内表面积m2容积m32500665407.0892.242筒体的高度 H=2.711m=2710mm釜
13、体高径比的复核 =1.1所以,该设计满足要求。4.2筒体壁厚的设计4.2.1设计参数的确定 110下反应器内各物质的饱和蒸气压化工热力学 物质 水 乙酸 乙醇 乙酸乙酯饱和蒸气压MPa 0.143 0.08 0.316 0.272该反应釜的操作压力必须满足乙醇的饱和蒸气压,所以取操作压力P=0.4MPa,则取设计压力PC=1.1P=0.44MPa。反应釜操作温度为100,设计温度取130。反应釜体材料选用Q345R。查化工设备机械基础得该材料在130时的许用应力t=189MPa。焊缝系数取=1.0(双面对接焊,100%无损探伤),腐蚀裕量C2=2mm。(取自化工设备机械基础)4.2.2筒体的壁
14、厚计算厚度=2.9134mm因为=2.9134min=3mm,min-C1所以取=3mm设计厚度d=+C2=3+2=5mm钢板负偏差 C1=0.3mm (取自化工设备机械基础)名义厚度n=d+C1+=5+0.3+=6mm有效厚度 e=n-C2-C1=3.7mm4.3釜体封头厚度计算厚度=2.9117mm因为=2.9117min=3mm,min-C1所以取=3mm设计厚度d=+C2=3+2=5mm钢板负偏差 C1=0.3mm (取自化工设备机械基础)名义厚度n=d+C1+=5+0.3+=6mm五、 反应釜夹套设计 夹套是在釜体的外侧用焊接或法兰连接的方式装设各种形状的钢结构,使其与釜体外壁形成密
15、闭的空间,在此空间内通入加热或冷却的介质,可加热或冷却反应釜内的物料。夹套的主要结构形式有整体夹套、半圆管夹套、和蜂窝夹套等,其适应的温度和压力不同。本设计采用整体夹套中的U型夹套。5.1夹套DN、PN的确定5.1.1夹套的DN夹套直径与筒体直径之间的关系Di /mm7001800200030003000400040005000Dj /mmDi+100Di+200Di+300Di+400由夹套的筒体内径与釜体筒体内径之间的关系可得:Dj=Di+200=2500+200=2700mm5.1.2夹套的PN有设计条件可知夹套内介质的工作压力为常压,故可取PN=0.25MPa,由于PN1.6MPa,所
16、以可以选用Q235B为夹套的制作材料。查化工设备机械基础得该材料在130时的许用应力t=110MPa,取焊缝系数=1.0(双面对接焊,100%无损探伤),腐蚀裕量C2=2mm。5.2夹套筒体的壁厚计算厚度=3.0717mm设计厚度d=+C2=3.0717+2=5.0717mm钢板负偏差 C1=0.3mm (取自化工设备机械基础)名义厚度n=d+C1+=5.0717+0.3+=6mm有效厚度 e=n-C1-C2=6-0.3-2=3.7mm5.3夹套筒体的高度Hj=1.44m=1440mm5.4夹套的封头封头的厚度夹套的下封头选用标准椭球形封头,内径与筒体相同。夹套上封头选带折边形的封头,且半锥角
17、=45。计算厚度=3.0699mm设计厚度d=+C2=3.0699+2=5.0699mm钢板负偏差 C1=0.3mm (取自化工设备机械基础)名义厚度n=d+C1+=5.0699+0.3+=6mm带折边锥形封头的大端与夹套筒体对焊,小端与釜体筒体角焊,所以取封头的壁厚与夹套筒体壁厚一致n=6mm5.5传热面积校核釜体下封头的内表面积FK=7.089m2,筒体高度H=2710mm,筒体内经Di=2500mm,筒体内表面积F0=21.274m2。总的换热面积F总=7.089+21.274=28.363m2六、反应釜釜体及夹套压力试验6.1釜体的水压试验6.1.1水压试验的压力PT=1.25Pc=1
18、.250.441=0.55MPa6.1.2强度校核T=185.54MPa查化工设备机械基础得Q345R的屈服极限s=345MPa0.9s=0.91.0345=310.5MPa因为T=185.54MPa0.9s=310.5MPa所以水压强度足够6.1.3水压试验的操作过程在保持釜体表面干燥的情况下,首先用水将釜体内的空气排空,再将水的压力缓慢升至0.55MPa,保证不低于30min,然后将压力缓慢降至0.44MPa,保压足够长时间,检查所有焊缝和连接部位有无泄漏和明显的残留变形。若质量合格,缓慢降压将釜体内的水排净,用压缩空气吹干釜体。若质量不合格,修补后重新试压直至合格为止。水压试验合格后再做
19、气压实验。6.2夹套的液压试验6.2.1水压试验的压力PT=1.25Pc=1.250.251=0.31MPa因为0.31MPaP+0.1=0.35MPa,所以应取PT=0.35MPa6.2.2强度校核T=127.53MPa查化工设备机械基础得Q235B的屈服极限s=235MPa0.9s=0.91.0235=211.5MPa因为T=127.53MPa0.9s=211.5MPa所以水压强度足够6.2.3水压试验的操作过程在保持夹套表面干燥的情况下,首先用水将夹套内的空气排空,再将水的压力缓慢升至0.35MPa,保证不低于30min,然后将压力缓慢降至0.25MPa,保压足够长时间,检查所有焊缝和连
20、接部位有无泄漏和明显的残留变形。若质量合格,缓慢降压将夹套内的水排净,用压缩空气吹干夹套。若质量不合格,修补后重新试压直至合格为止。水压试验合格后再做气压实验。七、搅拌器在反应釜中,为增快反应速率,强化传质或传热效果以及加强混合等作用,常装有搅拌装置,搅拌装置通常包括搅拌器和搅拌轴。搅拌轴由电动机通过联轴直接带动或经过减速机减速后间接带动。搅拌设备规模、操作条件及液体性质覆盖面非常广泛,选型时考虑的因素主要有两方面。一是介质的黏度,一是搅拌过程的目的和搅拌器能造成的流动形态。根据浆叶的结构,常用的搅拌器有:浆式、框式、锚式、涡轮式、推进式等。因为该搅拌器主要是为了实现物料的均相混合,所以,推进
21、式、浆式、涡轮式等都可以选择。本次设计选用涡轮式搅拌器。7.1搅拌桨的尺寸与安装位置搅拌桨的叶轮直径与反应釜的筒体直径比一般为0.20.5,一般取为0.33,所以叶轮的直径d=0.33Di=0.332500=825mm,取d=850mm由压力容器与过程设备一书可查得:叶轮直径d:叶轮叶长度l:叶轮叶片宽度W=20:5:4叶轮距槽底的安装高度h1=0.71.6d则由上述数据可计算:叶轮的叶长度 l=0.25d=212.5mm,取l=220mm叶轮的叶片宽度 W=0.2d=170mm叶轮距槽底的安装高度h1=1.0d=850mm挡板数目设计为6个,垂直安装在槽壁上并从槽壁延伸至液面上,挡板宽度一般
22、可取容器直径的0.1倍Wb=0.1Di=250mm桨叶数设计为6片,叶端速度设计为4.0m/s(中度搅拌),则搅拌器的转速为:n=1.50r/s为了消除可能出现的打旋现象,强化传质和传热,安装6片宽度为0.25m的挡板,全挡板的条件判断如下:()1.2nb=0.3790.35所以,符合全挡板条件7.2搅拌功率的计算由化工原理第三版上册计算方法计算。由化工原理第二版上册查得各物质的黏度计算公式=ATBlg=A+B/(C-T) 物料 A B C 乙醇-5.5972-846.95-24.124 乙酸1.2106106-3.6612 乙酸乙酯-4.8721-452.07-3.4748各物料的黏度计算结
23、果如下乙醇=0.343mPa/s乙酸=0.465mPa/s乙酸乙酯=0.213mPa/s水=0.2838mPa/s (直接可查得)对于非缔合液体混合物的黏度,可采用下式计算: lgm=Xilgi反应之前: lgm1=lg0.465+lg0.343+lg0.2838 =-0.0410-0.1495-0.3036=-0.4941m1=0.321mPa/s反应之后:lgm2=lg0.465+lg0.343+lg0.2838+lg0.213=-0.0252-0.1274-0.3332-0.0320=-0.5178m2=0.304mPa/s平均黏度 m=(m1+m2)/2=0.3125mPa/s雷诺准数
24、Re=3.537106由于Re很大,处于湍流区,所以应该安装挡板以消除打旋现象。由压力容器与过程设备查得,当Re=3.537106时,NP=6.0则,搅拌功率为:P=NPn3d5=9.16KW10KW7.3搅拌轴直径的设计7.3.1搅拌轴的选材与直径的计算搅拌轴材料一般是经过轧制或锻造经切削加工的碳素钢或合金钢,对于直径较小的轴,可用圆钢制造。本设计中轴不是很大,所以可以选用圆钢制造的轴。奥氏体型不锈耐酸钢有较高的抗晶间腐蚀能力,对一些有机酸和无机酸具有良好的耐腐蚀性能。本设计中的物料中有乙酸,因此搅拌轴的材料选用奥氏体型不锈耐酸钢1Cr18Ni9Ti。电动机的功率P=10KW,搅拌轴的转速n
25、=90r/min,材料选用1Cr18Ni9Ti,=25MPa,剪切弹性模量G=8.1104MPa,许用单位扭转角=1o/m。外力矩: mNm=9.553103=955310/90=1061Nm利用截面法: MTmax=m=1061Nm由max=得WP1061/25=42440Nmm/MPa搅拌轴为实心轴,则抗扭截面模量为WP=0.2d342440d59.65 可取d=60mm7.3.2搅拌轴刚度的校核max=103IP=刚度校核必须满足:max,即:d=52.60mm所以搅拌轴的直径取d=60mm满足要求。7.3.3搅拌轴临界转速校核由于搅拌轴的转速取n=90r/min200r/min,故可以
26、不作临界转速校核。八、反应釜附件的选型与尺寸设计8.1原料液进料管已知原料液每小时处理量为Q0=2.888m3/h,要求原料要在15分今晚,所以则Q0=2.8884=11.552m3/h设进料速率为u=1.5m/s,则进口管的直径为:d=0.052m=52mm圆整后取d=55mm因此选用764mm的无缝钢管。8.2人孔及手孔为检查压力容器在使用过程中是否出现问题,以及方便清洁和维修,压力容器常常开设人孔或手孔。由化工设备机械基础查得开设人孔或手孔的相关规定如下:Di/mm检查孔最少数量 人孔 手孔300Di500手孔2个圆孔75、长圆孔 7550500Di1000 Di1000 人孔1个,当容
27、器无法开人孔时:手孔2个 圆形400、长圆形:400250、380280圆孔100、长圆孔 10080 圆孔150、长圆孔 150100所以,可开设人孔1个或手孔2个,尺寸见上表。8.3支座夹套反应釜采用立式安装,采用耳式支座分为A型和B型两种,此设备需要保温110时选用B型。支座数设计为4个。8.4传动装置搅拌器有一定的转速要求,这需电动机通过传动装置来实现。传动装置通常设置在反应釜的顶部,采用立式布置。电动机经减速机将转速减到工艺要求的搅拌转速,再通过联动机带动搅拌轴旋转。减速机下设机座,以便按在反应釜的封头上。由于考虑到传动装置与轴封装置安装时要求保持一定的同心度以及装卸维修的方便,常在
28、封头上焊接一个底座,整个传动装置连机座及轴封装置仪器安装在这底座上。8.5机架机架是用来支撑减速机和传动轴的,轴承箱也归属于机架。机架有单支点机架和双支点机架两种。双支点机架使用与搅拌轴载荷较大,对搅拌密封装置要求较高的场合。对于中等载荷条件,且又可将减速机出轴的轴承作为另一个支点、或者在釜体内设置有中间轴承且可作为一个支点时,可选用单支点机架。九、设计结果一览表 项目 数值 操作压力MPa0.4 设计压力MPa0.44 操作温度100 设计温度130 设计体积m39.328 实际体积m315.547 反应釜体直径mm2500 夹套筒体直径mm2700 反应釜体高度mm2710 夹套筒体高度m
29、m1440 反应釜体壁厚mm6 夹套壁厚mm6 反应釜体选材Q345R 夹套选材Q235B 传热量KJ/h4.079106 搅拌器叶轮直径m0.85 搅拌器叶轮宽度m0.17 叶轮距槽底高度m0.85 叶轮转速r/s1.5 搅拌轴直径mm60 搅拌功率KW10 人孔400 1个十、设计心得本次课程设计主要是结合化学反应工程与化工设备机械基础两门课程的内容与特点所进行的一次模拟设计。本次设计从理论结合实际,对我们的学习与知识的综合运用有很大的帮助。同时,通过做课程设计,我们不仅熟练了本次课题的设计计算,而且通过分析课题、查阅资料、小组讨论、方法比较等,让我们对化工工艺设计有了初步的了解与认知。对我们养成独立解决问题有极大的帮助,并为我们以后从事这个行业做好铺垫。本次课程设计虽然在开始的时候遇到了很多困难,但通过和同学们的讨论和沟通,我很快就可以基本解决这些问题。通过查阅资料,让我对各种知识的运用与理解的能力有了显著的提高。相较上两次课程设计,本次课程设计完成的更完美、更成熟,而且让我在设计方面的能力有了显著的增长。为以后更好的适应工作与生活起了很大的作用。参考文献1:化工原理第二版上册2:化学反应工程第五版3:化工设备机械基础第四版4:化工计算 化学工业出版社5:化工制图第二版6:化工工艺设计手册第四版上册7:化工热力学化学工业出版社8:化工原理第三版上册-第 32 页-
限制150内