(人教版)七年级下册数学二元一次方程组教案(11页).doc





《(人教版)七年级下册数学二元一次方程组教案(11页).doc》由会员分享,可在线阅读,更多相关《(人教版)七年级下册数学二元一次方程组教案(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-(人教版)七年级下册数学二元一次方程组教案-第 11 页第八章 二元一次方程组单元备课 教学内容:从实际问题出发,运用等式的性质解方程,归纳“加减消元”、“代入消元”、等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。本教案对列方程解决实际问题的内容作了较集中的归类讨论。1、理解二元一次方程组及有关概念和等式的基本性质;2、熟练掌握二元一次方程组的解法(数字系数)并学会运用二元一次方程组解决简单的实际问题。过程与方法初步树立数学建模思想和体会化归思想的运用。情感、态度与价值观在解决实际问题中,体会数学的应用价值,激发学
2、习数学的欲望,提高分析问题和解决问题的能力。课时分配二元一次方程组 2课时消元 4课时实际问题与二元一次方程组 8课时三元一次方程组解法举例 4课时小测验 4课时合计 22课时单元教学反思:第八章 二元一次方程组教学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解. 第一课时新授课一、问题导入篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题
3、中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?胜的场数负的场数总场数,胜场积分负场积分总积分.这两个条件可以用方程xy22 2xy40 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成xy222xy40三、二元一次方程组的概念一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.四、典型例题:例1(1)方程(a2)x+(b-1)y=3是二元一次方程,试求a、b的取值范围.(2)方程x
4、a1+(a-2)y=2是二元一次方程,试求a的值例2若方程x2m1+5y3n2=7是二元一次方程.求m、n的值例3已知下列三对值:x6x10x10y9y6y1xy62x31y11(1) 哪几对数值使方程xy6的左、右两边的值相等?(2) 哪几对数值是方程组的解?例4求二元一次方程3x2y19的正整数解.第二课时练习课1写出一个解为的二元一次方程组_2ab=2,ac=,则(bc)33(bc)+=_3已知都是ax+by=7的解,则a=_,b=_4若2x5ayb+4与x12by2a是同类项,则b=_5方程mx2y=x+5是二元一次方程时,则m_6方程组=4的解为_7已知方程组的解相同求(2a+b)2
5、004的值 8已知x=1是关于x的一元一次方程ax1=2(xb)的解,y=1是关于y的一元一次方程b(y3)=2(1a)的解在y=ax2+bx3中,求当x=3时y值 教学反思82消元教学目标:1会用代入法解二元一次方程组.2初步体会解二元一次方程组的基本思想“消元”.4.用代入法、加减法解二元一次方程组.毛“消元思想”,“化未知为已知”的化归思想.重点:1、用代入消元法解二元一次方程组.2、 用代入法、加减法解二元一次方程组.难点:1、探索如何用代入法将“二元”转化为“一元”的消元过程. 2、会用二元一次方程组解决实际问题三、讲授新课2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主
6、要步骤有哪些呢?归纳:基本思路: “消元”把“二元”变为“一元”。主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法。3、把下列方程写成用含x的式子表示y的形式:(1)2xy3(2)3xy10 (3)5x-3y = x + y (4)-4x+y = -2第二课时教学过程甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8 元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?(一)提高问题,引发讨论我们知道
7、,对于方程组, 可以用代入消元法求解。这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?2.想一想:联系上面的解法,想一想应怎样解方程组分析:这两个方程中未知数y的系数互为相反数,因此由可消去未知数y,从而求出未知数x的值。解:由得19x=11.6x=,把x=代入得y=-这个方程组的解为两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。用加减法解方程组解方程组分析:本题不能直接运用加减法求解,要进行化简整理后再求解。(1)加减消元法解二元一次方程组的基本思想
8、是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤:第一步:方程,如果某个未知数的系数互为相反数,相加,消去未知数;未知数的系数相等,相减,消去未知数.第二步:不存在系数绝对值相等,选最小公倍数较小的一组系数,求出它们的最小公倍数,然后将原方程组变形,再回到第一步第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边第三课时一、创设情境,导入新课七年级(3)班在上体育课时,进行投篮比赛,
9、体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).进球数n012345投进球的人数1272同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?1.例题讲解(见P101)分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦_公顷,3台大收割机和2台小收割机1小时收割小麦_公顷.解:设1台大收割机和1台小收割机1小时
10、各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组去括号,得答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.第四课时练习课1解方程组(1)2甲、乙两人同解方程组 时,甲看错了方程中的a,解得,乙看错了中的b,的值3. 某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等求该电器每台的进价、定价各是多少元? 4一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配
11、成方桌?能配成多少张方桌 5甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离 8.3 实际问题与二元一次方程组教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用重点:1、能根据题意列二元一次方程组;根据题意找出等量关系;第一,二课时新授课一、复习列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答4.教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回
12、工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨千米),铁路运价为1.2元/(吨千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?5、例:甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?第三四课时练习课1、 某山区有23名中、小学生因贫困失学要捐助。资助一名中学生的学习费用需要a元,一名小学生的学
13、习费用需要b元。某校学生积极捐款,初中各年级学生捐款数额与用其捐助贫困中学生和小学生的部分情况如下表:捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1) 求a、b的值。(2) 初三学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中(不必写出计算过程)。2、 某公园的门票价格如下表所示:购票人数1人50人51100人100人以上票价10元/人8元/人5元/人某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。如果以班为单位分别买票
14、,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。问:甲、乙两个班分别有多少人?3、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?4、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?5、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?6、某运输队送一批货物,计划20天完成,实际每天多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 年级 下册 数学 二元 一次 方程组 教案 11

限制150内