光催化材料080804210(5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《光催化材料080804210(5页).doc》由会员分享,可在线阅读,更多相关《光催化材料080804210(5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-光催化材料的研究概况目前,人类使用的主要能源有石油、天然气和煤炭三种。根据国际能源机构的统计,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年。值得注意的是,中国剩余可开采储蓄仅为1390亿吨标准煤,按照中国2003年的开采速度16.67亿吨/年,仅能维持83年。中国石油资源不足,天然气资源也不够丰富,中国已成为世界第二大石油进口国。因此,开发新能源,特别是用清洁能源替代传统能源,迅速地逐年降低它们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的五种清洁能源: 水电、风能、太阳能、氢能和生物质。太阳能不仅清洁干
2、净,而且供应充足,每天照射到地球上的太阳能是全球每天所需能源的一万倍以上。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、直接、有效的方法。光催化就是利用太阳能的一种新技术。它不仅可以直接分解水、环境中的有毒有害物质,还可以直接将太阳能转化为电能与化学能(如氢能)等清洁能源。对于从根本上解决环境污染和能源短缺等问题具有重要意义。下面,从光催化材料的几个方面来简述其研究概况。一、 光催化材料的基本原理半导体光催化材料大多是n型半导体材料,都具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生
3、带间跃迁,即从价带跃迁到导带,从而产生光生电子和空穴。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。以TiO2为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制;采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围;通过在其表面沉积贵金属纳米颗粒可以提高电子一空穴对的分离效率,提高其光催化活性。以TiO2为载体的光催化技术已成功应用于废水处理、空气净化、自清洁表面、染料敏
4、化太阳电池以及抗菌等多个领域。二、高效光催化材料必须满足的条件(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。 因此,开发可见光响应的高效光催化材料是该领域的研究热点。三、提高光催化材料性能的途
5、径(1)颗粒微细纳米化:降低光生电子-空穴从体内到表面的传输距离,相应的,它们被复合的几率也大大降低。(2)过渡金属掺杂和非金属掺杂 :金属:掺杂后形成的杂质能级可以成为光生载流体的捕获阱,延长载流子的寿命。非金属:TiO2中N,S,C,P,卤族元素等。(3)半导体复合:利用异种半导体之间的能带结构不同,复合后,如光生电子从A粉末表面输出,而空穴从B表面导出。也即电子和空穴得到有效分离。(4)表面负载:将半导体纳米粒子固定技术在不同的载体上(多孔玻璃、硅石、分子筛等)制备分子或团簇尺寸的光催化剂。 (5)表面光敏:利用具有较高重态的具有可见光吸收的有机物,在可见光激发下,电子从有机物转移到半导
6、体粉末的导带上。该种方法不具有实用性,一方面,有机物的稳定性值得质疑;另一考虑的是经济因素。(6)贵金属沉积:贵金属有Pt, Au, Pd, Rh, Ni, Cu, Ag等 。(7)外场耦合:热场,电场,磁场,微波场,超声波场。目前,研究较多的是电场效应。其他场的研究也不少见,效果一般,更多的是从工艺层次来说明效果,所谓理论的东西不多。四、光催化材料的开发现状目前国内外光催材料的研究多数停留在二氧化钛及相关修饰。尽管这些工作卓有成效,但是在规模化利用太阳能方面还远远不够。光催化研究的关键问题之一是发展能够在太阳光下高效工作的稳定、低成本半导体光催化材料。为了与传统的TiO2 ,SrTiO3等仅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光催化 材料 080804210
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内