高考数学 数列专题复习.doc
《高考数学 数列专题复习.doc》由会员分享,可在线阅读,更多相关《高考数学 数列专题复习.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题一 数列【知识框架】【知识要点1】一、数列的概念1. 数列是按一定顺序排列的一列数,记作a1,a2,a3an,简记an.2. 数列an的第n项an与项数n的关系若用一个公式an=f(n)给出,则这个公式叫做这个数列的通项公式。3. 如果已知数列an的第一项(或前几项),且任何一项an与它的前一项an-1(或前几项)间的关系可以用一个式子来表示,即an =f(an-1)或an =f(an-1,an-2),那么这个式子叫做数列an的递推公式.4. 数列可以看做定义域为N*(或其子集)的函数,当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。二、数列的表示方法:列举法、图示法、
2、解析法(用通项公式表示)和递推法(用递推关系表示)。三、数列的分类1. 按照数列的项数分:有穷数列、无穷数列。2. 按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。3. 从函数角度考虑分:(考点)递增数列:对于任何nN+,均有an+1 an递减数列:对于任何nN+,均有an+1 an摆动数列:例如:1,-1,1,-1,1,-1L- 常数数列:例如:6,6,6,6,6,6有界数列:存在正数M,使an MS1 (n=1)Sn-Sn-1 (n2)四、an与Sn的关系:(考点)1. Sn = a1+a2+a3+an= 2. an= 【例题1】已知数列an是递增数列,其通项公式为an=n2
3、+n(n=1,2,3) ,则实数的取值范围 。解析: 数列an的通项公式为an=n2+n(n=1,2,3) 数列是递增数列an+1-an=(n+1)2+(n+1)- n2-n =2n+1+0 恒成立2n+1+的最小值是3+ 3+0 -3 实数的取值范围是(-3,+)【例题2】数列an的通项公式为an=3n2-28n,则数列各项中最小项是( B )A第项 B第项 C第项 D第项解析1:an=f(n)= 3n2-28n,f(n)是一元二次函数,其图像开口向上,有最低点,最低点是由于nN+,故取n=4和n=5代入,得到a4=-64,a5=-65,故选择Banan-1anan+1 3n2-28n3(n
4、-1)2-28(n-1)3n2-28n3(n+1)2-28(n+1) 解析2:设an为数列的最小项,则有 代入化简得到解得: 故n=5【练习1】在数列1,1,2,3,5,8,x,21,34,55中,x的值为( )-2 (n=1)2n-5 (n2)A10 B11 C12 D13【练习2】数列an的前n项和Sn=n2-4n+1,则an an=【知识要点2等差数列】1. 定义:如果数列an从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。即an-an-1=d(nN+,且n2),或者an+1-an=d(nN+)2. 通项公式:an=a1+(n-1)d
5、an=am+(n-m)d (公式的变形) an=an+b 其中a=d,b= a1-d3. 前n项和公式: (公式的变形) Sn=An2+Bn 其中A= B=4. 性质:(1)公式变形(2)如果A=,那么A叫做a和b的等差中项.(3)若为等差数列,且有k+l=m+n, 则(4)若为等差数列则是等差数列,其中p,q均为常数(5)若为等差数列,则(k,m)组成公差为md的等差数列.(6)若分别为的前n项,前2m项,前3m项的和,则,成等差数列.(7)若设等差数列,则是等差数列,其首项与首项相同,公差是公差的(7)非零等差数列奇数项与偶数项的性质若项数为2n,则S偶-S奇=nd, 若项数为2n-1,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学 数列专题复习 高考 数学 数列 专题 复习
限制150内