八年级数学上册11.3.1多边形(人教版).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级数学上册11.3.1多边形(人教版).docx》由会员分享,可在线阅读,更多相关《八年级数学上册11.3.1多边形(人教版).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级数学上册11.3.1多边形(人教版)八年级数学上11.3.2多边形的内角和(人教版) 11.3.2多边形的内角和 【教学目标】1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探究多边形的内角和与外角和公式,并会应用它们进行有关计算.【重点难点】重点:1.多边形的内角和公式.2.多边形的外角和公式.难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和公式.教学过程设计教学过程设计意图一、创设情景,导入新课问题1:你知道三角形的内角和是多少度吗?学生回答:三角形的内角和等于180.问题2:你知道四边形的内角和是多少度吗?学生回答:四边形的内角和等于360.问题3:你是如
2、何得到这个结论的?学生探讨回答并得出结论.通过问题回顾三角形内角和定理,引导学生利用这个定理探究多边形的内角和.回顾旧知的作用不仅是让学生对所学学问进行巩固,也是为后面的探究进行铺垫.二、师生互动,探究新知1.举一反三探究多边形的内角和问题1:如图,请你利用分割的方法探究六边形的内角和.学生探讨回答并得出结论.六边形的内角和等于720.问题2:选择两种不同的将多边形分割成三角形的方法填入下表:多边形的边数图形分割出的三角形个数多边形的内角和4学生探讨回答,并给出不同答案.问题3:通过填表,你知道多边形的内角和公式是什么了吗?学生回答:多边形的内角和等于(n2)180.问题4:回想正多边形的性质
3、,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?学生探讨沟通回答,并得出结论:正多边形的每个内角的度数是(n2)180n,每个外角的度数是360n.2.合作探究多边形的外角和问题1:小组合作完成下表.三角形四边形五边形六边形八边形十边形内角和外角和学生探讨给出答案.问题2:通过表格,你发觉了什么规律?学生探讨回答:多边形每增加一条边,内角和就增加180;多边形的外角和都是360.问题3:试证明你的结论.学生沟通合作作出证明,老师查看赐予引导. 在问题1中,由于分割的方法许多,老师可利用几何画板将学生所说的分割方法一一展示,但不宜过多,只选择比较简单理解的即可.在问题2中,要让学生留意
4、审题,同时要让学生发觉,通过不同的方法进行探究,虽然所得的结论有所差别,但都可以转化为同一种形式.在问题3中,要先让学生回想起正多边形的有关性质,才能利用这些性质得到计算正多边形内角与外角的方法. 从三角形的外角和动身,类比探究四边形、五边形的外角和,进而猜想多边形的外角和,并利用已学的多边形的内角和公式赐予证明.本环节没有采纳教科书中的例题引入,而是给了学生一个自由探究的空间,让学生亲身经验猜想与验证的过程,表格的形式不仅思路清楚,还有利于学生视察规律.三、运用新知,解决问题1.若n边形的n个内角与其一个外角的总和为1350,则n等于()A.6B.7C.8D.92.n边形的n个内角中锐角最多
5、有()A.1个B.2个C.3个D.4个3.若一个多边形的每个外角都等于与其相邻的内角的12,求这个多边形的边数.这三个练习都是多边形内、外角相联系的题,是对已学的学问进行综合应用,培育学生的应变实力.同时有肯定的难度,所以老师肯定要赐予适当的引导.四、课堂小结,提炼观点本节主要学习多边形的内角和与外角和公式.五、布置作业,巩固提升1.必做题:教材第25页第4、5、6题2.选做题:教材第25页第9、10题 【板书设计】多边形的内角和多边形内角和公式推导多边形外角和练习题过程解析【教学反思】本节主要介绍多边形的内角和与外角和公式,是一节自主探究课,所以在教学过程中,老师可以放手让学生探究,利用多种
6、方法进行探讨.同时关注学生的合作沟通,开阔学生的思路,让学生在经验整个探究过程的同时,体会数学的严谨性,培育学生的逻辑思维和解决问题的实力.在教学设计上,让学生经验猜想、探究、推理、归纳等过程,发展学生的合情推理实力和语言表达实力,驾驭将困难问题化为简洁问题,化未知为已知的思想方法,让学生在获得数学活动阅历的同时,提高探究、发觉和创新的实力. 八年级数学上册多边形内角和教学设计一、教材分析本节课是新课标八年级上册第十一章第三节多边形内角和。二、教学目标1、学问目标:了解多边形内角和公式。2、数学思索:通过把多边形抽象的转化成三角形体会抽象转化思想在几何中的运用,同时让学生体会从特别到一般的相识
7、问题的方法。3、解决问题:通过探究多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地应用数学抽象解决问题。4、情感看法目标:通过猜想、推理活动感受数学活动充溢着探究以及数学结论的确定性,提高学生学习热忱。三、教学重、难点重点:探究多边形内角和。难点:探究多边形内角和时,如何应用数学抽象把多边形转化成三角形。四、教学方法:引导发觉法、探讨法五、教具、学具:三角板、量角器实物投影多媒体课件六、教学过程:(一)创设情境,设疑激思师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。在独立探究的基础上,学生分组沟通与研讨,并汇总解决问题的方法。方法一:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 11.3 多边形 人教版
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内