《初二数学知识点归纳:平行线的判定.docx》由会员分享,可在线阅读,更多相关《初二数学知识点归纳:平行线的判定.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二数学知识点归纳:平行线的判定七年级下册数学学问点总结:相交线、平行线平行线的性质 七年级下册数学学问点总结:相交线、平行线平行线的性质: 性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。两条直线相交,所成的四个角中有一个角
2、是直角,那么这两条直线相互垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。留意:垂线是一条直线。具有垂直关系的两条直线所成的4个角都是90。垂直是相交的特别状况。垂直的记法:ab,ABCD。画已知直线的垂线有多数条。过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的全部线段中,垂线段最短。简洁说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 初一数学下册相交线与平行线学问点归纳 初一数学下册相交线与平行线学问点归纳一、目标与要求1.理解对顶角和邻补角的概念,能在图形中分辨;2.驾驭对顶角相等的性质和它的推证过程;3.通过在图形中分辨对顶角和
3、邻补角,培育学生的识图实力。二、重点在较困难的图形中精确分辨对顶角和邻补角;两条直线相互垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。三、难点在较困难的图形中精确分辨对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。四、学问框架五、学问点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直
4、线与一个平面相交,假如交角成直角,叫做相互垂直。5.垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线。6.垂足:假如两直线的夹角为直角,那么就说这两条直线相互垂直,它们的交点叫做垂足。7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。(2)连接直线外一点与直线上各点的全部线段中,垂线段最短。简洁说成:垂线段最短。(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。8.同位角、内错角、同旁内角:同位角:1与5像这样具有相同位置关系的一对角叫做同位角。内错角:2与6像这样的一对角叫做内错角。同旁内角:2与5像这样的一对角叫做同旁内角。
5、9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。10.平行线:在同一平面内,不相交的两条直线叫做平行线。11.命题:推断一件事情的语句叫命题。12.真命题:正确的命题,即假如命题的题设成立,那么结论肯定成立。13.假命题:条件和结果相冲突的命题是假命题。14.平移:在平面内,将一个图形沿某个方向移动肯定的距离,图形的这种移动叫做平移平移变换,简称平移。15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。16.定理与性质对顶角的性质:对顶角相等。17.垂线的性质:性质1:过一点有且只有一条直线与
6、已知直线垂直。性质2:连接直线外一点与直线上各点的全部线段中,垂线段最短。18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。19.平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。20.平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。21.命题的扩展三种命题(1)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另
7、外一个命题叫做原命题的逆命题。(2)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。(3)对于两个命题,假如一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。四种命题的相互关系(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。(2)四种命题的真假关系:两个命题互为逆否
8、命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系命题之间的关系(1)能够推断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。(3)命题的分类:A:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x-1)2单调递增。B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x1.C:否命题:将原命题的条件和结论全否定的新命题,但不变更条件和结论的依次,如:若x小于1,则f(x)=(x-1)2不单调递增。D:逆否命题:将原命题的条件和结论颠倒,
9、然后再将条件和结论全否定的新命题,如:若f(x)=(x-1)2不单调递增,则x小于1.(4)命题的否定命题的否定是只将命题的结论否定的新命题,这与否命题不同。(5)4种命题及命题的否定的真假性关系原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。充分条件与必要条件(1)“若p,则q”为真命题,叫做由p推出q,记作p=q,并且说p是q的充分条件,q是p的必要条件。(2)“若p,则q”为假命题,叫做由p推不出q,记作pq,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。充要条件假如既有p=q,又有q=p,就记作p=q,并且说p是
10、q的充分必要条件(或q是p的充分必要条件),简称充要条件。 平行线的判定导学案 课题:7.3平行线的判定班级:八年级姓名:时间:制单人:李亚明学习目标:1、驾驭直线平行的条件,并会进行简洁的应用。2、领悟归纳和转化的数学思想方法。学习重点:运用平行线的判定方法推断两直线平行学习难点:运用平行线的判定方法进行简洁的推理。一、复习回顾:1、证明几何命题的步骤是什么呢? 2、两条直线被第三条直线所截,假如同位角相等,那么这两条直线_。(简记为:同位角相等,两直线_。)二、探究新知:(1)平行线判定定理一证明:平行线的判定定理一:两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行。(简记为:
11、内错角相等,两直线平行。1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。已知:求证:证明:(2)平行线判定定理二证明:平行线判定定理二:两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行。(简记为:同旁内角互补,两直线平行。)1、指出定理的条件和结论,并画出图形,结合图形写出已知和求证。 已知:求证:证明:三、应用新知:1、如图,填空:(1)A与_互补,则AB_()(2)A与_互补,则AD_()2、如图:5=CDA=ABC,1=4,2=3,BAD+CDA=180,填空:BAD+CDA=180(已知)_(,)5=CDA(已知),5+BCD=180(),CDA+_=180()BCD6()_(,)3、已知,如图12180,填空。12180()23()13180()_(,)四、课堂练习:1、请你说说用直尺和平移三角尺画出两条直线平行的理由。 2、已知:如图,ac,bc。求证:ab。(用不同方法证明)ab c自我评价:小组评价:老师评价:对自己想说的一句话是:_ 第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页
限制150内