九年级数学竞赛化归—解方程组的基本思想讲座.docx
《九年级数学竞赛化归—解方程组的基本思想讲座.docx》由会员分享,可在线阅读,更多相关《九年级数学竞赛化归—解方程组的基本思想讲座.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学竞赛化归解方程组的基本思想讲座九年级数学竞赛抛物线讲座 九年级数学竞赛抛物线讲座一般地说来,我们称函数(、为常数,)为的二次函数,其图象为一条抛物线,与抛物线相关的学问有:1、的符号确定抛物线的大致位置;2抛物线关于对称,抛物线开口方向、开口大小仅与相关,抛物线在顶点(,)处取得最值;3抛物线的解析式有下列三种形式:一般式:;顶点式:;交点式:,这里、是方程的两个实根确定抛物线的解析式一般要两个或三个独立条件,敏捷地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应主动捕获、创建对称关系,以便从整体
2、上把握问题,由抛物线捕获对称信息的方式有:(1)从抛物线上两点的纵坐标相等获得对称信息;(2)从抛物线的对称轴方程与抛物线被轴所截得的弦长获得对称信息【例题求解】【例1】二次函数的图象如图所示,则函数值时,对应的取值范围是思路点拨由图象知抛物线顶点坐标为(一1,一4),可求出,值,先求出时,对应的值 【例2】已知抛物线(0)经过点(一1,0),且满意以下结论:;其中正确的个数有()A1个B2个C3个D4个思路点拨由条件大致确定抛物线的位置,进而判定、的符号;由特别点的坐标得等式或不等式;运用根的判别式、根与系数的关系 【例3】如图,有一块铁皮,拱形边缘呈抛物线状,MN4分米,抛物线顶点处到边M
3、N的距离是4分米,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?思路点拨恰当建立直角坐标系,易得出M、N及抛物线顶点坐标,从而求出抛物线的解析式,设A(,),建立含的方程,矩形铁皮的周长能否等于8分米,取决于求出的值是否在已求得的抛物线解析式中自变量的取值范围内 注:把一个生产、生活中的实际问题转化,成数学问题,须要视察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解【例4】二次函数的图象与轴交于A、两点(点A在点B左边),与轴交于C点,且ACB90(1)
4、求这个二次函数的解析式;(2)设计两种方案:作一条与轴不重合,与ABC两边相交的直线,使截得的三角形与ABC相像,并且面积为BOC面积的,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明) 思路点拨(1)A、B、C三点坐标可用m的代数式表示,利用相像三角形性质建立含m的方程;(2)通过特别点,构造相像三角形基本图形,确定设计方案 注:解函数与几何结合的综合题,擅长求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键【例5】已知函数,其中自变量为正整数,也是正整数,求何值时,函数值最小思路点拨将函数解析式通过变形得配方式,其对称轴为,因
5、,故函数的最小值只可能在取,时达到所以,解决本例的关键在于分类探讨 学历训练1如图,若抛物线与四条直线、所围成的正方形有公共点,则的取值范围是2抛物线与轴的正半轴交于A,B两点,与轴交于C点,且线段AB的长为1,ABC的面积为1,则的值为3如图,抛物线的对称轴是直线,它与轴交于A、B两点,与轴交于点C,点A、C的坐标分别为(-l,0)、(0,),则(1)抛物线对应的函数解析式为;(2)若点P为此抛物线上位于轴上方的一个动点,则ABP面积的最大值为4已知二次函数的图象如图所示,且OAOC,则由抛物线的特征写出如下含有、三个字母的式子,0,其中正确结论的序号是(把你认为正确的都填上)5已知,点(,
6、),(,),(,)都在函数的图象上,则()ABCD 6把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则有()A,B,C,c3D,7二次函数的图象如图所示,则点(,)所在的直角坐标系是()A第一象限B其次象限C第三象限D第四象限 8周长是4m的矩形,它的面积S(m2)与一边长(m)的函数图象大致是() 9阅读下面的文字后,回答问题:“已知:二次函数的图象经过点A(0,),B(1,-2),求证:这个二次函数图象的对称轴是直线题目中的横线部分是一段被墨水污染了无法分辨的文字(1)依据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由(2)请你
7、依据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整10如图,一位运动员在距篮下4米处跳起投篮,球运行的路途是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后精确落入篮圈已知篮圈中心到地面的距离为3.05米(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 11如图,抛物线和直线()与轴、y轴都相交于A、B两点,已知抛物线的对称轴与轴相交于C点,且ABC90,求抛物线的解析式 12抛物线与轴交于A、B两点,与轴交于点C,若ABC是直角三角形,则13如图,
8、已知直线与抛物线相交于A、B两点,O为坐标原点,那么OAB的面积等于14已知二次函数,一次函数若它们的图象对于随意的实数是都只有一个公共点,则二次函数的解析式为15如图,抛物线与两坐标轴的交点分别是A,B,E,且ABE是等腰直角三角形,AEBE,则下列关系式中不能总成立的是()Ab=0BSADCc2Cac一1Da+c016由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数的图象过点(1,0)求证:这个二次函数的图象关于直线对称依据现有信息,题中的二次函数不具有的性质是()A过点(3,0)B顶点是(2,一2)C在轴上截得的线段长为2D与轴的交点是(0,3)17已知A(x1,2022),B(
9、x2,2022)是二次函数()的图象上两时,二次函数的值是()ABC2022D518某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元吨)之间函数的图象是线段(如图2所示)若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润销售额一费用)19如图,已知二次函数的图象与轴交于A、B两点(点A在点B的左边),与轴交于点C,直线:xm(m1)与轴交于点D(1)求A、B、C三点的坐标;(2)在直线xm(m1)上有一点P(点P在第一象限),使得
10、以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相像,求P点坐标(用含m的代数式表示);(3)在(2)成立的条件下,试问:抛物线上是否存在一点Q,使得四边形ABPQ为平行四边形?假如存在这样的点Q,恳求出m的值;假如不存在,请简要说明理由 20已知二次函数及实数,求(1)函数在一2xa的最小值;(2)函数在axa+2的最小值21如图,在直角坐标:O中,二次函数图象的顶点坐标为C(4,),且在轴上截得的线段AB的长为6(1)求二次函数的解析式;(2)在轴上求作一点P(不写作法)使PA+PC最小,并求P点坐标;(3)在轴的上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与AB
11、C相像?假如存在,求出Q点的坐标;假如不存在,请说明理由 22某校探讨性学习小组在探讨有关二次函数及其图象性质的问题时,发觉了两个重要结论一是发觉抛物线y=ax2+2x+3(a0),当实数a改变时,它的顶点都在某条直线上;二是发觉当实数a改变时,若把抛物线y=ax2+2x+3的顶点的横坐标削减,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则A、B两点肯定仍在抛物线y=ax2+2x+3上(1)请你帮助探求出当实数a改变时,抛物线y=ax2+2x+3的顶点所在直线的解析式;(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;(3)在他
12、们其次个发觉的启发下,运用“一般特别一般”的思想,你还能发觉什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由 参考答案 九年级数学竞赛坐标平面上的直线讲座 一般地,若(,是常数,),则叫做的一次函数,它的图象是一条直线,函数解析式6中的系数符号,确定图象的大致位置及单调性(随的改变状况)如图所示: 一次函数、二元一次方程、直线有着深刻的联系,随意一个一次函数都可看作是关于、的一个二元一次方程;随意一个关于、的二元一次方程,可化为形如()的函数形式坐标平面上的直线可以表示一次函数与二元一次方程,而利用方程和函数的思想可以探讨直线位置关系,求坐标平面上的直线交点坐标转
13、化为解由函数解析式联立的方程组 【例题求解】 【例1】如图,在直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7),P为线段OC上一点,若过B、P两点的直线为,过A、P两点的直线为,且BPAP,则= 思路点拨解题的关键是求出P点坐标,只需运用几何学问建立OP的等式即可 【例2】设直线(为自然数)与两坐标轴围成的三角形面积为(1,2,2000),则S1+S2+S2000的值为() A1BCD 思路点拨求出直线与轴、轴交点坐标,从一般形式入手,把用含的代数式表示 【例3】某空军加油飞机接到吩咐,马上给另一架正在飞行的运输飞机进行空中加油在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 竞赛 方程组 基本 思想 讲座
限制150内