BP神经网络的设计实例(MATLAB编程)(9页).doc
《BP神经网络的设计实例(MATLAB编程)(9页).doc》由会员分享,可在线阅读,更多相关《BP神经网络的设计实例(MATLAB编程)(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-BP神经网络的设计实例(MATLAB编程)-第 9 页神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练 BP 网络。训练样本定义如下:输入矢量为p =-1 -2 3 1 -1 1 5 -3目标矢量为 t = -1 -1 1 1解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF生成一个新的前向神经网络% TRAIN对 BP 神经网络进行训练% SIM对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=-1, -2, 3, 1; -1, 1, 5, -3; % P 为输入矢量T=-1, -1, 1, 1
2、;% T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),3,1,tansig,purelin,traingdm)% 当前输入层权值和阈值inputWeights=net.IW1,1inputbias=net.b1% 当前网络层权值和阈值layerWeights=net.LW2,1layerbias=net.b2pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;
3、net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络net,tr=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:输入
4、矢量:P = -1:0.05:1;目标矢量:randn(seed,78341223);T = sin(2*pi*P)+0.1*randn(size(P);解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF生成一个新的前向神经网络% TRAIN对 BP 神经网络进行训练% SIM对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = -1:0.05:1;% T 为目标矢量randn(seed,78341223); T = sin(2*pi*P)+0.1*randn(size(P);% 绘制样本数据点p
5、lot(P,T,+);echo offhold on;plot(P,sin(2*pi*P),:);% 绘制不含噪声的正弦曲线echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),20,1,tansig,purelin);pauseclcecho offclcdisp(1. L-M 优化算法 TRAINLM); disp(2. 贝叶斯正则化算法 TRAINBR);choice=input(请选择训练算法(1,2):);figure(gcf);if(choice=1)echo onclc% 采用 L-M 优化算法 TRAINLMnet.trainF
6、cn=trainlm;pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice=2)echo onclc% 采用贝叶斯正则化算法 TRAINBRnet.trainFcn=trainbr;pauseclc% 设置训练参数net.trainParam.epochs = 500;randn(seed,192736547);net = init(net);% 重新初始化pauseclcend% 调用相应算法训练 BP 网络net,tr
7、=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制匹配结果曲线close all;plot(P,A,P,T,+,P,sin(2*pi*P),:);pause;clcecho off通过采用两种不同的训练算法,我们可以得到如图 1和图 2所示的两种拟合结果。图中的实线表示拟合曲线,虚线代表不含白噪声的正弦曲线,点为含有白噪声的正弦样本数据点。显然,经 trainlm 函数训练后的神经网络对样本数据点实现了过度匹配,而经 trainbr 函数训练的神经网络对噪声不敏
8、感,具有较好的推广能力。值得指出的是,在利用 trainbr 函数训练 BP 网络时,若训练结果收敛,通常会给出提示信息Maximum MU reached。此外,用户还可以根据 SSE 和 SSW 的大小变化情况来判断训练是否收敛:当 SSE 和 SSW 的值在经过若干步迭代后处于恒值时,则通常说明网络训练收敛,此时可以停止训练。观察trainbr 函数训练 BP 网络的误差变化曲线,可见,当训练迭代至 320 步时,网络训练收敛,此时 SSE 和 SSW 均为恒值,当前有效网络的参数(有效权值和阈值)个数为 11.7973。例3 采用提前停止方法提高 BP 网络的推广能力。对于和例 2相同
9、的问题,在本例中我们将采用训练函数 traingdx 和提前停止相结合的方法来训练 BP 网络,以提高 BP 网络的推广能力。解:在利用提前停止方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。在本例中,我们只定义并使用验证样本,即有验证样本输入矢量:val.P = -0.975:.05:0.975验证样本目标矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)值得注意的是,尽管提前停止方法可以和任何一种 BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如 trainlm 函数,所以本例中我们采用训
10、练速度相对较慢的变学习速率算法 traingdx 函数作为训练函数。本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF生成一个新的前向神经网络% TRAIN对 BP 神经网络进行训练% SIM对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = -1:0.05:1;% T 为目标矢量randn(seed,78341223);T = sin(2*pi*P)+0.1*randn(size(P);% 绘制训练样本数据点plot(P,T,+);echo offhold on;plot(P,sin(2*pi*P
11、),:); % 绘制不含噪声的正弦曲线echo onclcpauseclc% 定义验证样本val.P = -0.975:0.05:0.975; % 验证样本的输入矢量val.T = sin(2*pi*val.P)+0.1*randn(size(val.P); % 验证样本的目标矢量pauseclc% 创建一个新的前向神经网络net=newff(minmax(P),5,1,tansig,purelin,traingdx);pauseclc% 设置训练参数net.trainParam.epochs = 500;net = init(net);pauseclc% 训练 BP 网络net,tr=tra
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BP 神经网络 设计 实例 MATLAB 编程
限制150内