初中几何中线段和差最大值最小值典型分析最全(36页).doc
《初中几何中线段和差最大值最小值典型分析最全(36页).doc》由会员分享,可在线阅读,更多相关《初中几何中线段和差最大值最小值典型分析最全(36页).doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-初中几何中线段和(差)的最值问题一、两条线段和的最小值。基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧: (2)点A、B在直线同侧: A、A 是关于直线m的对称点。2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 填空:最短周长=_变式二:已知点A位于直线m,n 的内侧, 在
2、直线m、n分别上求点P、Q点PA+PQ+QA周长最短.二)、一个动点,一个定点:(一)动点在直线上运动:点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧:(二)动点在圆上运动点B在O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)(1)点A、B在直线m两侧: 过A点作ACm,且AC长等于PQ长,连接
3、BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。(2)点A、B在直线m同侧:练习题1如图,AOB=45,P是AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求PQR周长的最小值为Q2、如图1,在锐角三角形ABC中,AB=4,BAC=45,BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为3、如图,在锐角三角形ABC中 ,AB=,BAC=45,BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?4、如图4所示,等边ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=
4、2,EM+CM的最小值为.5、如图3,在直角梯形ABCD中,ABC90,ADBC,AD4,AB5,BC6,点P是AB上一个动点,当PCPD的和最小时,PB的长为_6、如图4,等腰梯形ABCD中,AB=AD=CD=1,ABC=60,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为7、如图5菱形ABCD中,AB=2,BAD=60,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯
5、内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_cm10、如图,菱形ABCD中,AB=2,A=120,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点则PB+PE的最小值是 12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为 13、如图,正方形ABCD的边长是2,DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为 14、如图
6、7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为cm(结果不取近似值)15、如图,O的半径为2,点A、B、C在O上,OAOB,AOC=60,P是OB上一动点,则PA+PC的最小值是 16、如图8,MN是半径为1的O的直径,点A在O上,AMN30,B为AN弧的中点,P是直径MN上一动点,则PAPB的最小值为( )(A)2 (B)(C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2
7、)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6)(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标3、如图10,在平面直角坐标系中,点A的坐标为(1,) ,AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴
8、上是否存在点C,使AOC的周长最小?若存在,求出点C的 坐标;若不存在,请说明理由;4如图,抛物线yx2x3和y轴的交点为A,M为OA的中点,若有一动点P,自M点处出发,沿直线运动到x轴上的某点(设为点E),再沿直线运动到该抛物线对称轴上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F的坐标,并求出这个最短路程的长5如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BDBC,交OA于点D将DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F(1)求经过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 几何 中线 最大值 最小值 典型 分析 36
限制150内