《勾股定理练习题(含答案)99070(5页).doc》由会员分享,可在线阅读,更多相关《勾股定理练习题(含答案)99070(5页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-勾股定理练习题张颐甜一、基础达标:1. 下列说法正确的是()A.若 a、b、c是ABC的三边,则a2b2c2;B.若 a、b、c是RtABC的三边,则a2b2c2;C.若 a、b、c是RtABC的三边,则a2b2c2;D.若 a、b、c是RtABC的三边,则a2b2c22. RtABC的三条边长分别是、,则下列各式成立的是()A B. C. D. 3 如果Rt的两直角边长分别为k21,2k(k 1),那么它的斜边长是()A、2kB、k+1C、k21D、k2+14. 已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()A.直角三角形B.等腰三角形 C.等腰直角三
2、角形D.等腰三角形或直角三角形5 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A121 B120 C90 D不能确定6 ABC中,AB15,AC13,高AD12,则ABC的周长为() A42 B32 C42 或 32 D37 或 337.直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )(A) (B) (C) (D)8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A:3 B:4 C:5 D:9若ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为( )A17 B.3 C.17或3 D.以上都不对10已知a、b、c是三
3、角形的三边长,如果满足则三角形的形状是( )A:底与边不相等的等腰三角形 B:等边三角形 C:钝角三角形 D:直角三角形11斜边的边长为,一条直角边长为的直角三角形的面积是 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为.13. 一个直角三角形的三边长的平方和为200,则斜边长为 14一个三角形三边之比是,则按角分类它是 三角形15. 一个三角形的三边之比为51213,它的周长为60,则它的面积是.16. 在RtABC中,斜边AB=4,则AB2BC2AC2=_17若三角形的三个内角的比是,最短边长为,最长边长为,则这个三角形三个角度数分别是 ,另外一边的平方是 ACB18如图,
4、已知中,以直角边为直径作半圆,则这个半圆的面积是 19 一长方形的一边长为,面积为,那么它的一条对角线长是 20 一个直角三角形的三边分别是6、8、x,则x= 。二、综合发展:CDAB第1题图1、已知,如图,在RtABC中,C=90,1=2,CD=1.5,BD=2.5,求AC的长.2、(1) 求AD的长。(2) 求AE的长。(3) 求EC的长。(4) 求点E到AC的距离。3、已知,ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明ABC是等腰三角形。ABPC第4题图4、 如图,在ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB2AP2=PBPC。5
5、、16、7、如图,铁路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B。现在要在铁路AB上建一个土特产品收购站E。已知DA=15km,CB=10km。(1) 若使得C、D两村到E站的距离相等,则E站应建在离A站多少km处?并求一下此时DE的长。(2) 若使得E站到C、D两村距离最短,则E站应建在离A站多少km处?并求一下此时CE的长。ADEBC7题图(3) 若连接CD,假设点E是AB上一个动点,从点A出发,到点B停止运动。设AE=x,SDEC=y。请写出y关于x的函数解析式(0x25)并求出SDEC的最大值和最小值以及相应的DE的长。答案:一、基础达标1. 解析:利用勾股定
6、理正确书写三角形三边关系的关键是看清谁是直角答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x然后再求它的周长.答案:C4解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5 解析: 勾股定理得到:,另一条直角边是15,所求直角三角形面积为答案: 6 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立答案:,直角,斜,直角7 解析:本题由边长之比是 可知满足勾股定理,即是直角三角形答案:直角8 解析:由三角形
7、的内角和定理知三个角的度数,断定是直角三角形答案:、,39 解析:由勾股定理知道:,所以以直角边为直径的半圆面积为10.125答案:10.12510 解析:长方形面积长宽,即12长3,长,所以一条对角线长为5答案:二、综合发展11 解析:木条长的平方=门高长的平方+门宽长的平方答案:12解析:因为,所以这三角形是直角三角形,设最长边(斜边)上的高为,由直角三角形面积关系,可得,答案:12cm13解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:520=100(m2) 14解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s15解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/hkm/h答案:这辆小汽车超速了-第 4 页-
限制150内