《平面向量的数量积》教学设计及反思(8页).doc
《《平面向量的数量积》教学设计及反思(8页).doc》由会员分享,可在线阅读,更多相关《《平面向量的数量积》教学设计及反思(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-平面向量的数量积教学设计及反思-第 8 页平面向量的数量积教学设计及反思 交口第一中学 赵云鹏 平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识垂直的判断、求夹角和线段
2、长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。二、教学目标: 1.了解向量的数量积的抽象根源。的数量积的概念、向量的夹角数量积的几何意义向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】1.平面向量数量积的概念和性质【难点】平面向量数量积的应用四、 课时安排: 2课时五、教学方案及其设计意图:1平面向量数量积的物理背景 平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F
3、的所做的功为W,这里的q是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。2 平面向量数量积(内积)的定义已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作ab,即有ab = |a|b|cosq,().并规定0与任何向量的数量积为0. 零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义ab = |a|b|cosq无法得到,因此另外进行了规定。3. 两个非
4、零向量夹角的概念已知非零向量与,作,则()叫与的夹角. ,是记法,是定义的实质它是一个实数。按照推理,当时,数量积为正数;当时,数量积为零;当时,数量积为负。4.“投影”的概念 定义:|b|cosq叫做向量b在a方向上的投影。 投影也是一个数量,它的符号取决于角q的大小。当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0时投影为 |b|;当q = 180时投影为 -|b|. 因此投影可正、可负,还可为零。 根据数量积的定义,向量b在a方向上的投影也可以写成 注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。5向量的数量积的几何意义:
5、数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积.向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:。此概念也以物体做功为基础给出。是向量b在a的方向上的投影。6两个向量的数量积的性质:设a、b为两个非零向量,则 (1) ab ab = 0; (2)当a与b同向时,ab = |a|b|;当a与b反向时,ab = -|a|b|. 特别的aa = |a|2或 (3)|ab| |a|b| (4),其中为非零向量a和b的夹角。例1. (1) 已知向量a ,b,满足,a与b的夹角为,则b在a上的投影为_ (2)若,则a在b方向上投影为 _例2. 已知,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面向量的数量积 平面 向量 数量 教学 设计 反思
限制150内