优质文档精选——数值分析上机实验报告.docx





《优质文档精选——数值分析上机实验报告.docx》由会员分享,可在线阅读,更多相关《优质文档精选——数值分析上机实验报告.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数值分析上机实验报告数值分析上机实验报告1.用Newton法求方程X7-X4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。1. 1 理论依据:设函数在有限区间a,b上二阶导数存在,且满足条件令故以1.9为起点如此一次一次的迭代,逼近x的真实根。当前后两个的差=时,就认为求出了近似的根。本程序用Newton法求代数方程(最高次数不大于10)在(a,b)区间的根。1.2 C语言程序原代码:#include#includemain()double x2,f,f1; double x1=1.9; /取初值为 1.9 do x2=x1; f=pow
2、(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1; while(fabs(x1-x2)=0.00001|x10.1); /限制循环次数 printf(计算结果:x=%fn,x1);1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:M if feval(df,x0)=0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e=eps&a
3、bs(feval(f,x1) x0=1.9; eps=0.00001; M=100; x=Newton(f,df,x0,eps,M); vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。此程序的不足之处是,所要求解的方程必须满足上述定理的四个条件,但是第二和第四个条件在计算机上比较难以实现。2.Newton迭代法是一个二阶收敛迭代式,他的几何意义Xi+1是Xi的切线与x轴的交点,故也称为切线法。它是平方收敛的,但它是局部收敛的,即要求初始值与方程的根充分接近,所以在计算过程中需要先确定初始值。3.本题在理论依据部分,
4、讨论了区间(0.1,1.9)两端点是否能作为Newton迭代的初值,结果发现0.1不满足条件,而1.9满足,能作为初值。另外,该程序简单,只有一个循环,且为顺序结构,故采用do-while循环。当然也可以选择for和while循环。2.已知函数值如下表:x12345f(x)00.693147181.09861231.38629441.6094378x678910f(x)1.79175951.94591012.0794452.19722462.3025851f(x)f(1)=1f(10)=0.1试用三次样条插值求f(4.563)及f(4.563)的近似值。2.1 理论依据这里 ,所以只要求出,就
5、能得出插值函数S(x)。求的方法为:这里最终归结为求解一个三对角阵的解。用追赶法解三对角阵的方法如下: , 综上可得求解方程Ax=d的算法:2.2 C语言程序代码:#include#includevoid main()int i,j,m,n,k,p;double q10,p10,s4,g4,x0,x1,g0=1,g9=0.1;double s1010;double a10,b10,c10,d10,e10,x10,h9,u9,r9;double f10=0,0.69314718,1.0986123,1.3862944,1.6094378, 1.7917595,1.9459101,2.079445
6、,2.1972246,2.3025851; printf(请依次输入xi:n); for(i=0;i=9;i+) scanf(%lf,&ei); /求h矩阵 for(n=0;n=8;n+) hn=en+1-en; d0=6*(f1-f0)/h0-g0)/h0; d9=6*(g9-(f9-f8)/h8)/h8; for(j=0;j=7;j+) dj+1=6*(fj+2-fj+1)/hj+1-(fj+1-fj)/hj)/(hj+hj+1); for(m=1;m=8;m+) um=hm-1/(hm-1+hm); for(k=1;k=8;k+) rk=hk/(hk-1+hk); for(i=0;i=9
7、;i+) /求u矩阵 for(p=0;p=9;p+) sip=0;if(i=p)sip=2; s01=1; s98=1; for(i=1;i=8;i+) sii-1=ui; sii+1=ri; printf(三对角矩阵为:n); for(i=0;i=9;i+) for(p=0;p=9;p+) /求r矩阵 printf(%5.2lf,sip); if(p=9) printf(n); printf(根据追赶法解三对角矩阵得:n); a0=s00; b0=d0; for(i=1;i=1;i-) xi-1=(bi-1-si-1i*xi)/ai-1; printf(M%d=%lfn,i,xi-1); p
8、rintf(可得s(x)在区间4,5上的表达式;n); printf(将x=4.563代入得:n); x0=5-4.563; x1=4.563-4;s4=x3*pow(x0,3)/6+x4*pow(x1,3)/6+(f3-x3/6)*(5-4.563)+(f4-x4/6)*(4.563-4);g4=-x3*pow(x0,2)/2+x4*pow(x1,2)/2-(f3-x3/6)+(f4-x4/6);printf(计算结果:f(4.563)的函数值是:%lfnf(4.563)的导数值是:%lfn,s4,g4);2.3 运行结果:2.4 问题讨论1. 三次样条插值效果比Lagrange插值好,没有
9、Runge现象,光滑性较好。2. 本题的对任意划分的三弯矩插值法可以解决非等距节点的一般性问题。3. 编程过程中由于定义的数组比较多,需要仔细弄清楚各数组所代表的参数,要注意各下标代表的含义,特别是在用追赶法计算的过程中。3.用Romberg算法求.3.1 理论依据:Romberg算法的计算步骤如下:(1)先求出按梯形公式所得的积分值(2)把区间2等分,求出两个小梯形面积之和,记为,即这样由外推法可得,。(3)把区间再等分(即等分),得复化梯形公式,由与外推可得,如此,若已算出等分的复化梯形公式,则由Richardson外推法,构造新序列, m=1,2,l, k=1,2,l-m+1,最后求得。
10、(4)或就停止计算,否则回到(3),计算,一般可用如下算法:其具体流程如下,并全部存入第一列 通常计算时,用固定l=N来计算,一般l=4或5即能达到要求。3.2 C语言程序代码:#include#includedouble f(double x) /计算f(x)的值 double z; z=pow(3,x)*pow(x,1.4)*(5*x+7)*sin(x*x); return(z);main() double t2020,s,e=0.00001,a=1,b=3; int i,j,l,k; t01=(b-a)*(f(b)+f(a)/2; /下为romberg算法 t11=(b-a)*(f(b)
11、+2*f(b+a)/2)+f(a)/4; t02=(a*t11-t01)/(4-1);j=3; for(l=2;fabs(t0j-1-t0j-2)=e;l+) for(k=1,s=0;k=0;i-,j+) tij=(pow(4,j-1)*ti+1j-1-tij-1)/(pow(4,j-1)-1); if(t01e) printf(t=%0.6fn,t01); else printf(用Romberg算法计算函数所得近似结果为:nf(x)=%0.6fn,t0j-1);3.3 运行结果:3.4 MATLAB上机程序function T,n=mromb(f,a,b,eps)if nargineps)
12、 J=J+1;h=h/2;S=0; for i=1:n x=a+h*(2*i-1); S=S+feval(f,x); end R(J+1,1)=R(J,1)/2+h*S; for k=1:J R(J+1,k+1)=(4k*R(J+1,k)-R(J,k)/(4k-1); end err=abs(R(J+1,J+1)-R(J+1,J); n=2*n;endR;T=R(J+1,J+1);format longf=(x)(3.x)*(x.1.4)*(5*x+7)*sin(x*x);T,n=mromb(f,1,3,1.e-5)3.5 问题讨论:1.Romberge算法的优点是:把积分化为代数运算,而实际
13、上只需求T1(i),以后用递推可得.算法简单且收敛速度快,一般4或5次即能达到要求。2.Romberge算法的缺点是:对函数的光滑性要求较高,计算新分点的值时,这些数值的个数成倍增加。3.该程序较为复杂,涉及函数定义,有循环,而且循环中又有判断,编写时需要注意该判断条件是处于循环中,当达到要求时跳出循环,终止运算。4.函数的定义可放在主函数前也可在主程序后面。本程序采用的后置方式。4. 用定步长四阶Runge-Kutta求解h=0.0005,打印yi(0.025) , yi(0.045) , yi(0.085) , yi(0.1) ,(i=1,2,3)4.1 理论依据:Runge_Kutta采
14、用高阶单步法,这里不是先按Taylor公式展开,而是先写成处附近的值的线性组合(有待定常数)再按Taylor公式展开,然后确定待定常数,这就是Runge-Kutta法的思想方法。本题采用四阶古典的Runge-Kutta公式:4.2 C语言程序代码:#includevoid fun(double x4,double y4,double h)y1=1*h; y2=x3*h; y3=(1000-1000*x2-100*x2-100*x3)*h; /微分方程向量函数void main() double Y54,K54,m,z4,e=0.0005; double y5=0,0.025,0.045,0.0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优质 文档 精选 数值 分析 上机 实验 报告

限制150内