一元一次方程知识点总结56483(14页).doc
《一元一次方程知识点总结56483(14页).doc》由会员分享,可在线阅读,更多相关《一元一次方程知识点总结56483(14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-一元一次方程知识点总结56483-第 14 页一元一次方程方程的有关概念夯实基础一 等式用等号(“=”)来表示相等关系的式子叫做等式。 温馨提示等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。如才是等式。二 等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。即如果,那么。性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。即如果,那么;如果,那么。 温馨提示等式类似天平,当天平两端放有相同质量的物体时,
2、天平处于平衡状态。若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。如,左边加2,右边也加2,则有。运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果,那么。b.传递性:如果,那么(也叫等量代换)。例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。(1) 如果,那么 ;(2) 如果,那么 ;(3) 如果,那么 。三 方程
3、含有未知数的等式叫做方程。 温馨提示方程有两层含义:方程必须是一个等式,即是用等号连接而成的式子。方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。如。四 方程与等式的区别与联系概念及其特点区别联系方程含有未知数的等式叫做方程。一个式子是方程,要满足两个条件:一是等式,二含有未知数。方程一定是等式,并且是含有未知数的等式。方程是特殊的等式。等式用等号来表示相等关系的式子叫做等式。等式的主体是相等关系。等式不一定是方程,因为等式不一定含有未知数。方程和等式的关系式从属关系,且有不可逆性。五 方程的解与解方程内容实质方程的解使方程中等号左右两边相等的未知数的值叫做方程的解具体的数值解方程
4、求方程的解的过程叫做解方程变形的过程温馨提示检验一个数是否是方程的解,只要用这个数代替方程中的未知数,如果方程两边的值相等,那么这个数就是方程的解;如果不相等,这个数就不是方程的解。方程可能无解,可能只有一个解,也可能有多个解。等式的基本性质是解方程的依据。方程的解释结果,而解方程是得到这个结果的一个过程。例3:下列方程中解为的是( ) A. B.C. D.例4:利用等式的性质解下列方程:(1) (2)掌握方法一 等量关系的确定方法列方程解应用题是初中数学的一个重点也是一个难点,要突破这一难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢?(1) 从关键词中找等量关系;(2) 对于
5、同一个量,从不同角度用不同的方法表示,得到等量关系;(3) 运用基本公式找等量关系;(4) 运用不变量找等量关系。例1:某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20,设把公顷旱地改为林地,则可列方程为( )。 A. B. C. D.二 利用方程的解求待定字母的方法利用方程的解求方程中的待定字母时,只要将方程的解代入方程,得到关于待定字母的方程,即可解决问题。例2:已知是关于的方程的解,则的值应为( )。 A. B. C. D.一元一次方程解一元一次方程夯实基础一 一元一次方程1. 定义:只含有一个未知数(元),未知数的次数都是1,等号两
6、边都是整式,这样的方程叫做一元一次方程。2. 标准形式:方程(其中是未知数,、是已知数,并且)叫做一元一次方程的标准形式。 温馨提示一元一次方程中未知数所在的式子是整式,即分母不含未知数。一元一次方程只含有一个未知数,未知数的次数都为1。如, 都不是一元一次方程。例1:下列方程中,哪些是一元一次方程?哪些不是? (1);(2);(3); (4);(5)。二 移项1. 定义:把等式一边的某项变号后移到另一边,叫做移项。2. 示例:解方程时,可在方程的两边先加,再减,得,即变形为。 与原方程比较,这个变形过程如下: 温馨提示移项的原理就是等式的性质1。移项所移动的是方程中的项,并且是从方程的一边移
7、到另一边,而不是方程的一边交换两个项的位置。移项时一定要改变所移动的项的符号,不移动的项不能变号。如解方程,若移项,得就出错了,原因是被移动的项“”的符号没有改变,而改变了没有被移动的项“”的符号。在移动时,最好先写左右两边不移动的项,再写移来的项。例2:下列各题中的变形为移项的是( )。,得,得,得,得三 去括号与去分母解一元一次方程的最终目标是要得到“”这一结果。为了达到这一目标,方程中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质2去掉分母,即为去分母。 温馨提示(1) 解含有括号的一元一次方程时,去括号时一般遵循去括号的基本法则。但在实际去括号时,应根据方程
8、的结构特点利用一些方法技巧,恰当地去括号,以简化运算。对于一些特殊结构的方程,可采用以下去括号的技巧:先去外再去内。即在解题时,打破常规,不是由内到外去括号,而是由外到内去括号。整体合并去括号。有些方程,把含有的某些多项式看作整体,先合并,再去括号,往往会简单。如,解方程时,可把看作整体先合并,再去括号。(2) 去分母时,在方程两边要同时乘以所有分母的最小公倍数,不要漏乘不含分母的项。当分母时小数时,需要把分母化整。同时注意分母化整只与这一项有关,而与其他项无关,要与去分母区分开。例3:下列方程去括号正确的是( )。得得得得例4:方程,去分母正确的是( )。 A. B. C. D.四 解一元一
9、次方程的一般步骤步骤具体做法变形依据去分母在方程的两边同乘各分母的最小公倍数等式性质2去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律移项把含有未知数的项移到方程的一边,其它各项都移到方程的另一边(记住移项要变号)等式性质1合并同类项把方程化为的形式合并同类项法则系数化为1在方程的两边都除以未知数的系数,得到方程的解等式性质2 温馨提示1. 解一元一次方程的五个步骤,有些可能用不到,有些可能重复使用,不一定按顺序进行,根据方程的特点灵活运用。2. 在解方程的不用环节有各自不同的注意事项,分别如下:去分母(1) 分子是多项式的,去分母后要加括号;(2) 不要漏乘不含分母的项去括号(1
10、) 括号前的数要乘括号内的每一项;(2) 括号前面是负数,去掉括号后,括号内各项都要变号移项(1) 移项时不要漏项;(2) 将方程中的项从一边移到另一边要变号,而在方程同一边改变项的位置 时不变号合并同类项按合并同类项法则进行,不要漏乘且系数的符号处理要得当系数化为1(1) 未知数的系数为整数或小数时,方程两边同除以该系数;(2) 未知数的系数为分数时,方程两边同乘该系数的倒数例5:解一元一次方程。掌握方法一 一元一次方程概念的应用原方程为一元一次方程,即未知数的次数为1,系数不为0,由此来确定原方程中待定字母的值。例1:(1)若是关于的一元一次方程,则= ; (2)若方程是关于的一元一次方程
11、,则 。二 利用合并同类项与移项解方程的方法(1) 合并同类项时,不能用连等号与原方程相连。(2) 几个常数项也是同类项,移项时应该把它们放到一起。(3) 移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。(4) 移项必变号,不变号不能移项。例2:解方程:(1);(2)。三 利用去分母解方程的方法利用等式的性质2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系数为整数的方程。(1) 分数线具有括号的作用,分子如果是一个多项式,去掉分母后,要把分母后,要把分子放在括号里。(2) 去分母时,不能漏乘不含分母的项。例3:解方程。四 含小数的一元一次方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程 知识点 总结 56483 14
限制150内